K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi

28 tháng 11 2015

Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 10 2017

Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi  nhóm có 3 số liên tiếp nhau.

Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)

\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)

\(=2+2.7+2^5.7+.....+2^{98}.7\)

\(\Rightarrow\)Tổng này chia 7 dư 2

10 tháng 10 2017

bài 1

 abcabc=abc.1001

có 1001chia hết cho 7 

=>abc.1001 chia hết cho 7

còn chia hết cho 11 và 13 thì tương tự

bài 2

A=(2100+299+298)+...+(24+23+22)+21

A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21

A=298.(22+21+1)+...+22.(22+21+1)+21

A=298.7+...+22.7+21

A=(298+22).7 +21

có 7 chia hết co 7

=>(298+22).7 chia hết cho 7

=>Achia 7 dư 21

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

4 tháng 7 2017

a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)

\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)

\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)

\(A=7+2^3.7+...+2^{2004}.7\)

\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7

b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)

Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)

=>22006 chia 7 dư 4

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

22 tháng 7 2015

Ta có: \(C=2+2^2+2^3+...+2^{100}\)

          \(C=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

           \(C=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}\left(1+2\right)\)

           \(C=2.3+2^3.3+...+2^{99}.3\)

           \(C=3\left(2+2^3+...+2^{99}\right)\)chia hết cho 3

Ta có : \(C=2+2^2+2^3+...+2^{100}\)

                 \(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

                 \(=2+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

                 \(=2+2^2.7+...+2^{98}.7\)

                 \(=7.\left(2^2+...+2^{98}\right)+2\)

Vậy C chia 7 dư 2

 

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)