K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

Gọi ptđt $OA$ là $y=ax$ (do đi qua gốc tọa độ)

Ta có: $y_A=ax_A\Leftrightarrow 1=a.2\Rightarrow a=\frac{1}{2}$

Vậy ptđt $OA$ là $y=\frac{1}{2}x$

Gọi ptđt cần tìm là $(d): y=mx+n$

Vì $(d)\parallel OA$ nên $m=\frac{1}{2}$ hay $(d): y=\frac{1}{2}x+n$

$B\in (d)\Rightarrow y_B=\frac{1}{2}x_B+n$

$\Leftrightarrow 2=\frac{1}{2}(-1)+n\Rightarrow n=\frac{5}{2}$

Vậy ptđt cần tìm là $y=\frac{1}{2}x+\frac{5}{2}$

NV
12 tháng 9 2021

a. Gọi pt đường thẳng có dạng \(y=ax+b\)

Do đường thẳng đi qua M và B nên: \(\left\{{}\begin{matrix}-a+b=2\\3b+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{2}\\b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

b. Gọi đường thẳng có dạng \(y=ax+b\)

Do đường thẳng song song y=2x+3 và qua M nên:

\(\left\{{}\begin{matrix}a=2\\-2a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\-4+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)

\(\Rightarrow y=2x+7\)

18 tháng 12 2023

a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)

Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)

Vậy: (d): y=3x+b

Thay x=1 và y=2 vào (d), ta được:

\(b+3\cdot1=2\)

=>b+3=2

=>b=-1

vậy: (d): y=3x-1

b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3

=>(d): y=ax+3

Thay x=-4 và y=7 vào (d), ta được:

\(-4a+3=7\)

=>-4a=4

=>a=-1

vậy: (d): y=-x+3

c: A(1;4); B(4;8)

=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)

=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)

c: y=2x-6

=>2x-y-6=0

Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;

\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)

22 tháng 11 2023

Gọi (d): y = ax + b là đường thẳng cần viết

a) Do (d) song song với đường thẳng y = 3x/2 nên a = 3/2

⇒ (d): y = 3x/2 + b

Do (d) đi qua A(1/2; 7/4) nên:

3/2 . 1/2 + b = 7/4

⇔ 3/4 + b = 7/4

⇔ b = 7/4 - 1/4

⇔ b = 1

Vậy (d): y = 3x/2 + 1

b) Do (d) cắt trục tung tại điểm có tung độ là 3 nên b = 3

⇒ (d): y = ax + 3

Do (d) đi qua điểm B(2; 1) nên:

a.2 + 3 = 1

⇔ 2a = 1 - 3

⇔ 2a = -2

⇔ a = -2 : 2

⇔ a = -1

Vậy (d): y = -x + 3

c) Do (d) có hệ số góc là 3 nên a = 3

⇒ (d): y = 3x + b

Do (d) đi qua P(1/2; 5/2) nên:

3.1/2 + b = 5/2

⇔ 3/2 + b = 5/2

⇔ b = 5/2 - 3/2

⇔ b = 1

Vậy (d): y = 3x + 1

22 tháng 11 2023

d: Gọi (d): y=ax+b(\(a\ne0\))

(d) có tung độ gốc là -2,5 nên (d) cắt trục tung tại điểm có tung độ là -2,5

Thay x=0 và y=-2,5 vào (d), ta được:

\(a\cdot0+b=-2,5\)

=>b=-2,5

=>y=ax-2,5

Thay x=1,5 và y=3,5 vào y=ax-2,5; ta được:

\(a\cdot1,5-2,5=3,5\)

=>\(a\cdot1,5=6\)

=>a=4

Vậy: (d): y=4x-2,5

e: Thay x=1 và y=2 vào (d), ta được:

\(a\cdot1+b=2\)

=>a+b=2(1)

Thay x=3 và y=6 vào (d), ta được:

\(a\cdot3+b=6\)

=>3a+b=6(2)

Từ (1) và (2), ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\3a+b=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a+3b=6\\3a+b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=0\\a+b=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=0\\a=2-b=2-0=2\end{matrix}\right.\)

Vậy: (d): y=2x

13 tháng 9 2015

Gọi đường thẳng đi qua A(1;2) có dạng y = ax + b

Vì y = ax+  b // y = 3x + 2008

=> a = 3 ; b khác 2008 

=> y = 3x + b

Mà A(1;2) thuộc y = 3x + b  

thay x = 1 ; y = 2 ta có :

2 = 3 + b => b = -1 

Vậy pt đoạn thẳng đi qua A(1;2) là y =3x - 1 

17 tháng 10 2023

loading...  loading...  

11 tháng 11 2016

Đặt (d) :y = ax + b

Vì (d) đi qua B(2;1) nên ta có 2a + b = 1

Đường thẳng đi qua OA có dạng y = a'x => a' = y/x = 3/2 (thay tọa độ điểm A vào )

Vì (d) song song với OA , tức a = a' = 3/2 . Từ đó suy ra b = 1-2a = ...........

Thay a,b vào thì tìm được hàm số y = ax  + b