Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thao khảo nè :
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Nguồn: Yahoo hỏi đáp
a ) Ta có :
A = 2 o + 2 1 + 2 2 + ... + 2 2016
2A = 2 1 + 2 2 + 2 3 + ... + 2 2017
2A - A = ( 2 1 + 2 2 + 2 3 + ... + 2 2017 )
- ( 2 o + 2 1 + 2 2 + ... + 2 2016 )
A = 2 2017 - 1
=> A < B
b ) Vì A và B cách nhau 1 đơn vị
A = 22017 - 1
B = 22017 - 1 + 1 = 2 2017
Vậy A và B là 2 số tự nhiên liên tiếp
bai nay lop cua cua toi
A=2^2017-1
A<B
B-A=1 => A,B la hai so TN lien tiep
........................chi tiet ---tinh A
2A=2+2^2+2^3+..+2^2017
(2A-A)=A=2^2017-1 (het)
a2-1>a2-4>a2-7>a2-10
biểu thức A=(a2-1)(a2-4)(a2-7)(a2-10) là tích 4 số <0 nên phải có 1 số<0 hoặc 3 số <0
TH1. a2-10 <0 SUY RA A=0,1,2,3,-1,-2,-3
TH2.a2-10<a2-7<a2-4<0 SUY RA A=0,1,-1
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
\(\text{Giải:}\)
\(\text{Ta có: 99.10^k-10^k+2=99.10^k -10^k . 100}\)
\(\text{A=-(10^k) mà: B=10^k nên: B lớn hơn A vậy: B lớn hơn A}\)
Ta có : A = 99 . 10k - 10k+2 = 99 . 10k - 10k . 102
= 10k . ( 99 - 100 ) = -1 . 10k
= -10k Vậy A < 0
Mà B = 10k ( k > 0 )
B > 0
Nên A < B
Cơ số 2016 gấp cơ số 2 số lần là:
2016:1=1013
Vậy 1013.2.2016=2016^2
1013.2016=2^2
Vì 1013.2.2016>1013.2016 nên 2016^2>2^2016
A=1+2+22+...+22015
=>2A=2+22+23+....+22016
=>2A-A=(2+22+23+....+22016)-(1+2+22+...+22015)
=>A=22016-1<22016=B
=>A<B
A=1+2+22+....+22015
=>2A=2.(1+2+22+....+22015)
=>2A=2+22+23+....+22016