K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

(*) tìm max 

\(a^2+b^2-ab=4\Leftrightarrow2\left(a^2+b^2-ab\right)=8\)

<=> \(\left(a-b\right)^2+a^2+b^2=8\)

<=> \(\left(a-b\right)^2=8-\left(a^2+b^2\right)\) . Vì \(\left(a-b\right)^2\ge0\) 

=> \(8-M\ge0\Leftrightarrow M\le8\) 

Vậy Max M = 8 khi x = y = 2 hoặc x = y= - 2 

(*) tìm Min

\(a^2+b^2-ab=4\Leftrightarrow2\left(a^2+b^2\right)=8+2ab\Leftrightarrow3\left(a+b\right)^2=8+\left(a+b\right)^2\)

Vì \(8+\left(a+b\right)^2\ge8\Leftrightarrow3M\ge8\Leftrightarrow M\ge\frac{8}{3}\) 

Vậy Min M = 8/3 khi x = -y = ....

26 tháng 1 2016

tick mik đi mik tick lại cho

2 tháng 12 2021

Câu 1:

a, Giả sử \(A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\ge0\)

\(\Leftrightarrow A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge0\)

Mà \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow A\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\cdot\dfrac{a}{b}-2\cdot\dfrac{b}{a}+2\ge0\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}-2\cdot\dfrac{a}{b}+1\right)+\left(\dfrac{b^2}{a^2}-2\cdot\dfrac{b}{a}+1\right)\ge0\\ \Leftrightarrow\left(\dfrac{a}{b}-1\right)^2+\left(\dfrac{b}{a}-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Dấu \("="\Leftrightarrow a=b\)

b, \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\right)+2+\left(\dfrac{a^2}{b^2}+2+\dfrac{b^2}{a^2}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-4\)

\(B=\left(\dfrac{a^4}{b^4}-2\cdot\dfrac{a^2}{b^2}+1\right)+\left(\dfrac{b^4}{a^4}-2\cdot\dfrac{b^2}{a^2}+1\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\\ \Leftrightarrow B=\left(\dfrac{a^2}{b^2}-1\right)^2+\left(\dfrac{b^2}{a^2}-1\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\dfrac{a}{b}+\dfrac{b}{a}-4\\ \Leftrightarrow B\ge0+0+0+\dfrac{a^2+b^2}{ab}-4\ge\dfrac{2ab}{ab}-4=2-4=-2\)

Dấu \("="\Leftrightarrow\left(a;b\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Câu 2:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=M^2\\ \Leftrightarrow M^2\le25\cdot25\\ \Leftrightarrow M\le25\)

Dấu \("="\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{25}{25}=1\Leftrightarrow\left\{{}\begin{matrix}x^2=9\\y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(M_{max}=25\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

a2+b2+c2=4−abc≤4a2+b2+c2=4−abc≤4

Smax=4Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)24=abc+a2+b2+c2≥abc+3(abc)23

Đặt 3√abc=x>0⇒x3+3x2−4≤0abc3=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

20 tháng 5 2021
Bài bạn nhầm rồi
23 tháng 5 2022

a2+b2+c2=4−abc≤4

Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)2

Đặt 3√abc=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

23 tháng 5 2022

Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv

mà thôi Min làm đr còn max 

TKS

7 tháng 10 2017

fdsafdsaf

fdsafsdaf

fdasfadsf

23 tháng 5 2021

,

NV
23 tháng 5 2021

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)