\(\frac{4a^2}{a-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Ta có:\(\frac{1}{M}=\frac{a-1}{4a^2}=\frac{1}{4a}-\frac{1}{4a^2}=-\left[\left(\frac{1}{2a}\right)^2-\frac{1}{4a}+\frac{1}{4^2}\right]+\frac{1}{16}=-\left(\frac{1}{2a}-\frac{1}{4}\right)^2+\frac{1}{16}\le\frac{1}{16}\)

\(\Rightarrow M\ge16\)

Dấu ''=''xảy ra khi \(\frac{1}{2a}=\frac{1}{4}\Leftrightarrow a=2\)

1 tháng 6 2018

\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=\left(b^2+\frac{b}{4a}+\frac{a}{2}\right)+\frac{3}{2}a\)

\(\ge3\sqrt[3]{b^2.\frac{b}{4a}.\frac{a}{2}}+\frac{3}{2}a=\frac{3}{2}a+\frac{3}{2}b=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

\(A=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+b^2+\frac{b^2+a^2}{a^2b^2}\ge0\)

\(MinA=0\Leftrightarrow\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

2 tháng 9 2016

bạn lm sai rồi

NV
4 tháng 10 2020

\(A=4\left(x-1\right)+\frac{25}{x-1}+4\ge2\sqrt{\frac{100\left(x-1\right)}{x-1}}+4=24\)

\(A_{min}=24\) khi \(x=\frac{7}{2}\)

31 tháng 10 2018

\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)

\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)

\(=24-2\sqrt{6}\)