Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt b-1=x;a-1=y>>E=(y+1)^2/x+(x+1)^2/y>=(y+1+x+1)^2/(x+y)(BĐT Cauchuy-Swartch)
=(x+y+2)^2/(x+y)=((x+y)^2+4(x+y)+4)/(x+y)=(x+y)+4+4/(x+y)
=(x+y)+4/(x+y)>+4>=4+4=8
Dấu =xảy ra khi (x+y)=4/x+y và x=y khi x=y=1(do x,y>0 vì a,b>1)
khi và chỉ khi a=b=2
Vậy E min =8 khi a=b=2
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Đề đúng; Với a>1; b>1. Tìm GTNN \(\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(a+b\right)^2}{a+b-2}\ge8\) ta cm nó như sau:
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b\right)-16\Leftrightarrow\left(a+b-4\right)^2\ge0\)
Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a
Tương tự : b^2/a-1 + 4.(a-1) >= 4b
<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b
<=> G + 4a+4b-8 >= 4a+4b
<=> G >= 4a+4b-4a-4b+8 = 8
Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2
Vậy GTNN của G = 8 <=> a=b=2
Tk mk nha
đúng rồi
đúng
đúng
100000000000000000000000000000000000000000000000000%
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có \(P=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
Áp dụng BĐT Cosi ta có: \(a^2+\frac{1}{16a^2}\ge\frac{1}{2};b^2+\frac{1}{16b^2}\ge\frac{1}{2};\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}=\frac{4}{2ab}\)
Mặt khác ta có:\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}\)
=> \(2\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)\ge4\cdot\frac{4}{a^2+b^2+2ab}=\frac{16}{\left(a+b\right)^2}=16\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}\ge8\)
Vậy \(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
Vậy \(Min_P=\frac{17}{2}\)đạt được khi \(a=b=\frac{1}{2}\)
Câu 1: a,b > 1. chứng minh: a^2 /(b-1) + b^2/ (a-1) >=8?
Thanks!!kết bạn nha!!