Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
mình làm cách đơn giản nhất .
Sử dụng liên tiếp bđt Svacxo ta có :
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}=\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)Hay \(P\ge\frac{25}{2}\)Dấu = xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
cách khác !
\(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+2\frac{a}{b}+2\frac{b}{a}\)
Theo bất đẳng thức AM-GM ta có : \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{2a}{b}+\frac{2b}{a}\ge a^2+b^2+2\sqrt{\frac{1}{a^2b^2}}+2\sqrt{\frac{2a2b}{ab}}\)
\(=a^2+b^2+\frac{2}{ab}+2\sqrt{4}=a^2+b^2+\frac{2}{ab}+4\)
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức : \(a^2+b^2+\frac{2}{ab}+4\ge\frac{\left(a+b\right)^2}{2}+\frac{2}{ab}+4=\frac{1}{2}+4+\frac{2}{ab}\)
Ta sẽ chứng minh bất đẳng thức phụ sau : \(ab\le\frac{\left(a+b\right)^2}{4}\)Biến đổi tương đương ta có :
\(\left(a+b\right)^2\ge4ab< =>a^2+2ba+b^2\ge4ab< =>a^2-2ab+b^2\ge0< =>\left(a-b\right)^2\ge0\)*đúng*
Sử dụng bất đẳng thức phụ trên ta được : \(\frac{9}{2}+\frac{2}{ab}\ge\frac{9}{2}+\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{9}{2}+\frac{2}{\frac{1}{4}}=\frac{9}{2}+8=\frac{25}{2}\)
Hay : \(P\ge a^2+b^2+\frac{2}{ab}+4\ge\frac{1}{2}+4+\frac{2}{ab}\ge\frac{9}{2}+8=\frac{25}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\)
Vì \(a,b>0\)\(\Rightarrow\) Áp dụng bất đẳng thức cộng mẫu ta có:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{1}=4\)
Vì \(a,b>0\)\(\Rightarrow\)Áp dụng bđt Cô si ta có: \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow2\sqrt{ab}\le1\)\(\Rightarrow\left(2\sqrt{ab}\right)^2\le1\)
\(\Leftrightarrow4ab\le1\)\(\Leftrightarrow2ab\le\frac{1}{2}\)\(\Rightarrow\frac{1}{2ab}\ge2\)
\(\Rightarrow C=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4+2=6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(minC=6\)\(\Leftrightarrow x=y=\frac{1}{2}\)
bài này đã có rất nhiều bạn hỏi rồi
Ta có hai bất đẳng thức phụ quen thuộc sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*) ; \(2xy\le\frac{\left(x+y\right)^2}{2}\)(**)
BĐT(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng)
BĐT(**)\(< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng
Lại có \(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\)
Sử dụng bất đẳng thức phụ (*) : \(C\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}=\frac{1}{2ab}+\frac{4}{\left(a+b\right)^2}=\frac{1}{2ab}+4\)
Sử dụng bất đẳng thức phụ (**) : \(\frac{1}{2ab}+4\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+4=2+4=6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy GTNN của C = 6 đạt được khi a = b = 1/2
Áp dụng BĐT AM-GM ta có:
\(T=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{a\cdot\frac{1}{2a}}+2\sqrt{b\cdot\frac{1}{2b}}+2\sqrt{\frac{1}{2a}\cdot\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu "=" khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta có \(P=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
Áp dụng BĐT Cosi ta có: \(a^2+\frac{1}{16a^2}\ge\frac{1}{2};b^2+\frac{1}{16b^2}\ge\frac{1}{2};\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}=\frac{4}{2ab}\)
Mặt khác ta có:\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}\)
=> \(2\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)\ge4\cdot\frac{4}{a^2+b^2+2ab}=\frac{16}{\left(a+b\right)^2}=16\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}\ge8\)
Vậy \(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
Vậy \(Min_P=\frac{17}{2}\)đạt được khi \(a=b=\frac{1}{2}\)