\(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}+\frac{1}{2019}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Dễ thấy tổng 2 số lẻ liên tiếp thì chia hết cho 4

cm:(2k+1)+(2k+3) =4k+4 chia hết cho 4

Quy đồng biểu thức và rút gọn ta có:

\(A=3.5.....2017.2019+1.5...2017.2019+1.3.7...2017.2019+...+1.3.5....2019\)+\(+1.3.5...2017\)

Tổng trên có 1010 số hạng 

=>  chia thành 505 nhóm như sAU

\(A=\left(3.5....2017.2019+1.5...2017.2019\right)+...+\left(1.3.5...2015.2019+1.3.5...20152017\right)\)

Đặt nhân tử chung ra ngoài bên trong còn tổng 2 số tự nhiên lẻ liên tiếp 

\(A=5.7....2017.2019.\left(3+1\right)+...+1.3.5...2015.\left(2017+2019\right)\)chia hết cho 4

=> A chia cho 4 dư 0

11 tháng 9 2020

A/B>1/2018

\(\frac{A}{B}>\frac{1}{2018}\)

( Tự nghĩ nên không chắc )

Dãy trên có số số hạng là ;

( 2021 - 1 ) : 2 + 1 = 1011 ( số hạng )

=> Phân số bằng -1 được tạo từ số hạng thứ :

( 1011 - 1 ) : 2 + 1 = 506

=> Số các phân số nhỏ hơn -1 là :

506 - 1 = 505 ( số hạng )

3 tháng 6 2020

ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1

=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2

=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019

=> B= 2019 *(1/2+1/3+...+1/2019)

=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)

=> A/B= 1/2019

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

7 tháng 2 2020

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+\frac{2}{2018}+\frac{3}{2017}+...+\frac{2018}{2}+\frac{2019}{1}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+1+\frac{2}{2018}+1+\frac{3}{2017}+1+...+\frac{2018}{2}+1+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2020}{2019}+\frac{2020}{2018}+\frac{2020}{2017}+...+\frac{2020}{2}+\frac{2020}{2020}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}\right)}\)

\(\frac{A}{B}=\frac{1}{2020}\)

9 tháng 10 2019

Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)

\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)

\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)

\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)

19 tháng 3 2019

Đề thi đó

23 tháng 2 2020

Đoán XemBạn lm đc chx ak

25 tháng 2 2020

Chưa bn ạ😭