Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: \(\Leftrightarrow3^{x+4}\cdot\dfrac{1}{3}-4\cdot3^x=3^{16}\left(1-4\cdot3^3\right)\)
=>\(3^x\cdot27-4\cdot3^x=3^{16}\cdot\left(-107\right)\)
=>3^x*23=3^16*(-107)
=>\(x\in\varnothing\)
2: \(\Leftrightarrow2^x\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)=2^{10}\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)\)
=>2^x=2^10
=>x=10
3: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>8^x=8^9
=>x=9
1: \(\Leftrightarrow3^x\cdot\left(4\cdot\dfrac{1}{9}+2\cdot3\right)=3^4\left(4+2\cdot3^3\right)\)
=>3^x=3^4*3^2
=>x=4+2=6
\(\dfrac{1}{3}+\dfrac{3}{35}< \dfrac{x}{210}< \dfrac{4}{7}+\dfrac{1}{3}\)
Ta có: \(\dfrac{1}{3}+\dfrac{3}{35}=\dfrac{35+9}{105}=\dfrac{44}{105}\)
và \(\dfrac{4}{7}+\dfrac{1}{3}=\dfrac{12+7}{21}=\dfrac{19}{21}\)
=> \(\dfrac{44}{105}=\dfrac{44.2}{105.2}=\dfrac{88}{210}\)
=> \(\dfrac{19}{21}=\dfrac{19.10}{21.10}=\dfrac{190}{210}\)
=> \(\dfrac{88}{201}< \dfrac{x}{210}< \dfrac{190}{210}\)
=> Vậy x ∈ {89; 90; 91; 92; ... ; 188; 189}
2: =>3<x<16/5+9/5=5
=>x=4
1: =>70/210+18/210<x/210<120/210+70/210
=>88<x<190
hay \(x\in\left\{89;90;...;189\right\}\)
Xét với mọi n > 2 , ta có \(\frac{n}{n+2}< \frac{n-1}{n}\) (vì \(n^2< n^2+n-2\))
Áp dụng : \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}< \frac{1}{3}.\frac{3}{4}.\frac{6}{7}.\frac{9}{10}...\frac{207}{208}\)
Suy ra : \(A^2< \frac{1.4.7.10...208}{3.6.9.12...210}.\frac{1.3.6.9...207}{3.4.7.10...208}=\frac{1}{210}.\frac{1}{3}=\frac{1}{630}< \frac{1}{625}=\left(\frac{1}{25}\right)^2\)
Do đó \(A< \frac{1}{25}\)
=> \(\left(2x-15\right)^3\left(2x-15-1\right)\left(2x-15+1\right)=0\)
=> \(\left(2x-15\right)^3\left(2x-16\right)\left(2x-14\right)=0\)
=> \(\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy ...
b: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{11}\cdot3^9}\)
\(=\dfrac{1}{2}\cdot\dfrac{-2}{3}=\dfrac{-1}{3}\)
Đề bài yêu cầu gì vậy bạn?