K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:

$a=1+2+3+...+n=\frac{n(n+1)}{2}$
Gọi $ƯCLN(a,b)=d$ thì:

$\frac{n(n+1)}{2}\vdots d$

$2n+1\vdots d$

$\Rightarrow n(n+1)\vdots d; 2n+1\vdots d$
Từ $n(n+1)\vdots d$, mà $(n,n+1)=1$ nên:
$n\vdots d$ hoặc $n+1\vdots d$
Nếu $n\vdots d\Rightarrow 2n\vdots d$

Kết hợp với $2n+1\vdots d\Rightarrow 1\vdots d$

$\Rightarrow d=1$

Nếu $n+1\vdots d\Rightarrow 2n+2\vdots d$

Kết hợp với $2n+1\vdots d$

$\Rightarrow (2n+2)-(2n+1)\vdots d$

Hay $1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(a,b)=1$

2 tháng 12 2023

Cảm ơn rất nhiều!

d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)

Mk trả lời mỗi câu khó nha!!!

d*) \(\dfrac{n+1}{2n+1}\in Z\) 

Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\) 

\(n+1⋮2n+1\) 

\(\Rightarrow2.\left(n+1\right)⋮2n+1\) 

\(\Rightarrow2n+2⋮2n+1\) 

\(\Rightarrow2n+1+1⋮2n+1\) 

\(\Rightarrow1⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

2n+1-11
n-10

Vậy \(n\in\left\{-1;0\right\}\)

27 tháng 8 2020

1/ 

10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}

2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}

=> n \(\in\){2;3;4;5;7;13}

3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}

=> 2n \(\in\){0;1;3;4;9;19}

=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)

4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}

Mà n < 20 => n \(\in\){0;4;8;12;16}

5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}

=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )

6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}

=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)

=> n = 1 

7. n(n + 1) = 6 = 2.3 => n = 2

20 tháng 11 2019

a) Ta có:

\(n^2+3n+2\)

\(=n^2+n+2n+2\)

\(=n\left(n+1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n+2\right)\)

Vì \(n+1⋮n+1\)

\(\Rightarrow n+2⋮n+1\)

Ta có:

\(n+2=n+1+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)

Vậy \(n=0\)

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???

7 tháng 4 2017

Giả sử \(ƯCLN\left(n,2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow2n+1-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,n\right)=1\)

Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)