K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Ta có:

\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)

..............

\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)

=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)

=>A<\(\frac{3}{4}\)

7 tháng 2 2018

Mình nghĩ bạn cần xem lại :

\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)

Xem lại ..

AH
Akai Haruma
Giáo viên
22 tháng 10

Lời giải:

$M=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}$

$=\frac{1.2.3.4....99}{2.3.4...100}=\frac{1}{100}$

Hiển nhiên $\frac{1}{15}> \frac{1}{100}> \frac{1}{110}$ nên ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 10

** Sửa đề: CMR: $\frac{1}{15}> M> \frac{1}{110}$

2 tháng 5 2020

Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)

+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)

                   \(\frac{1}{3.3}< \frac{1}{2.3}\)

                     ............................

                     ..............................

                  \(\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)

Chúc bạn học tốt

14 tháng 1

rút gọn

21 tháng 8 2016

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

> 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10

> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10

> 1/2 - 1/10

> 5/10 - 1/10

> 2/5 (1)

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

< 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9

< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9

< 1 - 1/9

< 8/9 (2)

Từ (1) và (2) => 2/5 < 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9 < 8/9