Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a²+b² chia hết cho 7
=> a² chia hết cho 7 và b² chia hết cho 7
=> a chia hết cho 7 và b chia hết cho 7
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Ta có:\(7=2^0+2^1+2^2\)
Số số hạng của tổng E là: (99-1):1+1=99(số hạng)
Vì 99:3=33 nên ta có:
\(E=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)\)\(+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(E=2.\)\(\left(2^0+2^1+2^2\right)\)\(+2^4.\left(2^0+2^1+2^2\right)+...+\)\(2^{97}.\left(2^0+2^2+2^2\right)\)
\(E=2.7+2^4.7+...+2^{97}.7\)
\(E=\left(2+2^4+...+2^{97}\right).7\)
Vì 7 chia hết cho 7 và \(2+2^4+...+2^{97}\)là số nguyên nên E chia hết cho 7
Vậy E chia hết cho 7
Bài mình có sai sót thì mọi người thông cảm và đóng góp ý kiến cho mình nha.
không biết