K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2010}}+\dfrac{1}{3^{2011}}\)

\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2010}}+\dfrac{1}{3^{2011}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}\right)\)

\(2A=1-\dfrac{1}{3^{2012}}\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{3^{2012}.2}< \dfrac{1}{2}\)

10 tháng 8 2018

Đáp số là 2027091
Đây là một dạng bài toán mà nhà vật lý Newton thể hiện sự thông minh của mình ở thời tiểu học khi thầy giáo bắt tính tổng của các số tự nhiên từ 1 đến 100.|nhưng h là từ 1 đến 2013|

Minh cho cong thuc de ban muon tinh tong toi so nao cung duoc.
Tong cua n so tu 0 den n =n(n+1)/2

thay số ta có 2013|2013+1|/2=2027091

với n=2013 vì có 2013 số hạng

10 tháng 8 2018

bạn hay quá nhớ đc cả chuyện ấy luôn

25 tháng 6 2017

\(\sqrt{\left(1-\sqrt{2012}\right)^2}\sqrt{2013+2\sqrt{2012}}\)

\(=\sqrt{\left(1-2\sqrt{503}\right)^2}\sqrt{\left(1+\sqrt{2012}\right)^2}\)

\(=\left(2\sqrt{503}-1\right)\left(1+\sqrt{2012}\right)\)

\(=\left(2\sqrt{503}-1\right)\left(1+2\sqrt{503}\right)\)

\(=\left(2\sqrt{503}-1\right)\left(2\sqrt{503}+1\right)\)

\(=4\cdot503-1\)

\(=2012-1\)

\(=2011\)

Câu 1: 

a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)

=(-4)+(-4)+...+(-4)

=-4x504=-2016

b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)

14 tháng 4 2020

1/a) A = (–m + n – p) – (–m – n – p)

= -m + n - p +m +n + p

= 2n

b) Thay n = -1 vào biểu thức A

\(\Rightarrow\) 2. (-1) =-2

2/ A = (–2a + 3b – 4c) – (–2a – 3b – 4c)

= -2a +3b-4c + 2a + 3b + 4c

= 6b

Thay b = -1 vào biểu thức A

\(\Rightarrow\) 6. ( -1) = -6

28 tháng 2 2017

câu 1 đề sai hay vô nghiệm ko bt

câu 2: pt thứ 2 thiếu

28 tháng 2 2017

nếu chưa ai làm chiều học về mk sẽ làm

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a)

\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;\)\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)

\( \Rightarrow f\left( { - 2} \right) > f\left( { - 1} \right)\)

Lấy \({x_1},{x_2} \in \left( { - 2; - 1} \right)\) sao cho \({x_1} < {x_2}\).

\( \Rightarrow {x_1} - {x_2} < 0\)

\({x_1},{x_2} < 0 \Rightarrow {x_1} + {x_2} < 0\)

Ta có:

\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) > 0\\ \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\end{array}\)

=> Hàm số nghịch biến trên (-2;-1)

Vậy hàm số giảm khi x tăng từ -2 đến -1

b)

\(\begin{array}{l}f\left( 1 \right) = 1;f\left( 2 \right) = {2^2} = 4\\ \Rightarrow f\left( 1 \right) < f\left( 2 \right)\end{array}\)

Lấy \({x_1},{x_2} \in \left( {1;2} \right)\) sao cho \({x_1} < {x_2}\).

\( \Rightarrow {x_1} - {x_2} < 0\)

\({x_1},{x_2} > 0 \Rightarrow {x_1} + {x_2} > 0\)

Ta có:

\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) < 0\\ \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\end{array}\)

=> Hàm số đồng biến trên (1;2)

Vậy hàm số tăng khi x tăng từ 1 đến 2.