Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=1\cdot13+...+3^9\cdot13\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
b)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=1\cdot40+...+3^8\cdot40\)
\(=40\cdot\left(1+...+3^8\right)⋮40\)
c)\(S=1+3+...+3^{11}\)
\(3S=3\left(1+3+...+3^{11}\right)\)
\(3S=3+3^2+...+3^{12}\)
\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)
\(2S=3^{12}-1\)
\(S=\frac{3^{12}-1}{2}\)
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
Bài 4:
a)Ta có: B= 23!+19!−15!
B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15
Vì 11 chia hết cho 11=>23! chia hết cho 11
19!chia hết cho 11
15! chia hết cho 11
Câu 1: (3 điểm)Thực hiện phép tính:
a) 17 – 25 = -8
b) 55 – 17 = 38
c) (-15) + (-122) = -137
d) ( 7 – 10) + 3 = -3 + 3 = 0
e) 25 – (-75) + 32-(32+75) = 25 + 75 +32 - 107 = 25
f) (-5).8. (-2).3 = (-40).(-6) = 240
Bài 1
a. 17-25=-8
b.55-17=38
c. (-15)+(-122)
=-(15+122)
=-137
d.(7-10)+3
=-3+3
=0
e. 25-(-75)+32-(32+75)
=25+75+32-32-75
=25+(75-75)+(32-32)
=25
f. (-5).8.(-2).3
=\(\left[\left(-5\right).\left(-2\right)\right].\left(8.3\right)\)
=10.24
=240
1. Tập hợp B = ( 10;11;12;...;...; 99) có 99-10+1=90 (phân tử)
2. A, Tập hợp C = ( 0;2;4;6;8 )
B, Tập hợp B = (11;13;15;17;19)
C, Tập hợp A = (18;20;22)
D, Tập hợp B = (25;27;29;31)
3. D= ( 21;23;25;....;99) có (99-21)÷2+1=40 (phần tử )
E= ( 32;34;36;...;96) có ( 96-32)÷2+1=33 (phần tử )
bài 1) a) \(1+2+3+4+........+2005+2006\)
\(\Leftrightarrow\) \(\left(1+2006\right)+\left(2+2005\right)+........+\left(1003+1004\right)\)
\(\Leftrightarrow\) \(2007.\dfrac{2006}{2}=2007.1003=2013021\)
b) \(5+10+15+.......+2000+2005\)
\(\Leftrightarrow\) \(\left(2005+5\right)\left(2000+10\right)+.......+\left(1000+1010\right)\)
\(\Leftrightarrow\) \(2010.\dfrac{2005}{5}=2010.401=405010\)
c) \(140+136+132+.......+64+60\)
\(\Leftrightarrow\) \(\left(140+60\right)+\left(136+64\right)+.......+\left(100+100\right)\)
\(\Leftrightarrow\) \(200.10\) = \(2000\)
1)
a) \(1+2+3+4+.....+2005+2006\)
Số các số hạng của dãy trên là:
\((2006-1):1+1=2006\)
Tổng dãy là:
\(\dfrac{2006\left(2006+1\right)}{2}=2013021\)
b) \(5+10+15+.....+2000+2005\)
Số các số hạng của dãy là:
\((2005-5):5+1=401\)
Tổng dãy là:
\(\dfrac{401\left(2005+5\right)}{2}=403005\)
c)\(140+136+132+.....+64+60\)
\(=60+64+.....+132+136+140\)
Số số hạng của dãy là:
\((140-60):4+1=11\)
Tổng dãy là:
\(\dfrac{11\left(60+140\right)}{2}=1100\)
Bài 1:
a: \(\dfrac{a}{b}=\dfrac{a\cdot\left(-1\right)}{b\cdot\left(-1\right)}=\dfrac{-a}{-b}\)
b: \(\dfrac{a}{-b}=-\dfrac{a}{b}=-\dfrac{a}{b}\)
Số các số hạng của A là : (99 - 11) : 2 + 1 = 45 (số)
Lẻ + Lẻ = Chẵn nên có số cặp 2 số lẻ là :
45 : 2 = 22 (thừa 1 số lẻ)
Vậy A lẻ
(99-11)/3+1