K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: D thuộc Ox nên D(x;0)

vecto AB=(-3;4)

vecto DC=(-3-x;-1)

Để ABDC là hình thang thì \(\dfrac{-3}{-x-3}=\dfrac{4}{-1}=-4\)

=>3/x+3=4

=>x+3=3/4

=>x=-9/4

2: \(\overrightarrow{MA}=\left(3-x;0\right)\)

vectoMC=(-3-x;-1)

Để |vecto MA+vecto MC| nhỏ nhất thì vecto MA+vecto MC=vecto 0

=>M là trung điểm của AC

=>M(0;-1/2)

16 tháng 10 2021
shsbdudjwosmgs

Bài tập Tất cả

NV
14 tháng 11 2021

a.

\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)

\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)

\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)

b.

\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)

\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)

c.

\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)

\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)

NV
13 tháng 11 2019

a/ Gọi K (hay L gì đó) có tọa độ \(K\left(0;y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;3\right)\\\overrightarrow{CK}=\left(-5;y-10\right)\end{matrix}\right.\)

Do AB//CK \(\Leftrightarrow\frac{-5}{4}=\frac{y-10}{3}\Rightarrow y=\frac{25}{4}\) \(\Rightarrow K\left(0;\frac{25}{4}\right)\)

b/ Gọi \(J\left(x;0\right)\Rightarrow\overrightarrow{JA}=\left(-1-x;2\right)\) ; \(\overrightarrow{JB}=\left(3-x;5\right)\); \(\overrightarrow{JC}=\left(5-x;10\right)\)

\(\Rightarrow\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}=\left(13-3x;32\right)\)

\(\Rightarrow T=\left|\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}\right|=\sqrt{\left(13-3x\right)^2+32^2}\ge32\)

\(T_{min}=32\) khi \(13-3x=0\Leftrightarrow x=\frac{13}{3}\Rightarrow J\left(\frac{13}{3};0\right)\)

NV
13 tháng 11 2019

c/ Gọi \(Q\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AQ}=\left(1;y-2\right)\\\overrightarrow{QC}=\left(5;10-y\right)\end{matrix}\right.\)

\(\Rightarrow T=AQ+CQ=\sqrt{1^2+\left(y-2\right)^2}+\sqrt{5^2+\left(10-y\right)^2}\)

\(\Rightarrow T\ge\sqrt{\left(1+5\right)^2+\left(y-2+10-y\right)^2}=10\)

\(T_{min}=10\) khi \(\frac{y-2}{1}=\frac{10-y}{5}\Leftrightarrow y=\frac{10}{3}\Rightarrow Q\left(0;\frac{10}{3}\right)\)

d/ Gọi \(P\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AP}=\left(x+1;-2\right)\\\overrightarrow{PB}=\left(3-x;5\right)\end{matrix}\right.\)

\(\Rightarrow T=PA+PB=\sqrt{\left(x+1\right)^2+\left(-2\right)^2}+\sqrt{\left(3-x\right)^2+5^2}\)

\(\Rightarrow T\ge\sqrt{\left(x+1+3-x\right)^2+\left(-2+5\right)^2}=5\)

\(T_{min}=5\) khi \(\frac{x+1}{-2}=\frac{3-x}{5}\Rightarrow x=-\frac{11}{3}\Rightarrow P\left(-\frac{11}{3};0\right)\)