K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:

CM $\sqrt{a}+\sqrt{b}> \sqrt{a+b}$

BĐT cần chứng minh tương đương với:

$(\sqrt{a}+\sqrt{b})^2> a+b$

$\Leftrightarrow a+b+2\sqrt{ab}> a+b$
$\Leftrightarrow \sqrt{ab}>0$ (luôn đúng với mọi $a>0, b>0$)

Ta có đpcm

--------------------

CM $|a|+|b|> |a+b|$. Cái này là = rồi chứ không phải > bạn nhé.

Khi $a>0; b>0$ thì $|a|=a; |b|=b\Rightarrow |a|+|b|=a+b$

$|a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

 

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

15 tháng 8 2019

Áp dụng bđt Bunhiacopxki :

\(\sqrt{c}\cdot\sqrt{a-c}+\sqrt{c}\cdot\sqrt{b-c}\le\sqrt{\left[\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2\right]}\)

\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\frac{c}{a-c}=\frac{c}{b-c}\Leftrightarrow a-c=b-c\Leftrightarrow a=b\)

học giỏi ghê >>

22 tháng 3 2019

\(\left\{{}\begin{matrix}\sqrt{a}=x\\\sqrt{b}=y\end{matrix}\right.\)

\(bdt\Leftrightarrow x\left(\frac{x}{y}-1\right)\ge y\left(1-\frac{y}{x}\right)\Leftrightarrow\frac{x^2}{y}-x\ge y-\frac{y^2}{x}\)

\(\Leftrightarrow\frac{x^2}{y}+\frac{y^2}{x}-x-y\ge0\)

bđt này hiển nhiên đúng theo Cauchy-Schwarz:

\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}-x-y\ge0\)

\("="\Leftrightarrow x=y\Rightarrow a=b\)

23 tháng 3 2019

Bất đẳng thức đó đâu phải Cauchy-Schwarz, đó là bất đẳng thức Svac-sơ mà -.-

28 tháng 6 2020

ta có: \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}=\frac{7a+b}{2}\)

=> \(\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\)

\(\sqrt{4b\left(3b+a\right)}\le\frac{7b+a}{4}\)

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b 

28 tháng 6 2020

Sửa đề: CM: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)

Ta có \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\left(1\right)\)

Áp dụng bất đẳng thức Cô-si cho các só dương ta được

\(\hept{\begin{cases}\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\left(2\right)\\\sqrt{4b\left(3b+a\right)}\le\frac{4b+\left(3b+a\right)}{2}=\frac{7b+a}{2}\left(3\right)\end{cases}}\)

Từ (2) và (3) \(\Rightarrow\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}\le4a+4b\left(4\right)\)

Từ (1) và (4) => \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{4a+4b}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a=b

26 tháng 7 2018

Áp dụng bất đẳng thức cô - si cho 2 số không âm ta có :

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)\)

\(\Rightarrow\dfrac{\sqrt{c\left(a-c\right)}}{\sqrt{ab}}+\dfrac{\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\left(đpcm\right)\)