K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:

CM $\sqrt{a}+\sqrt{b}> \sqrt{a+b}$

BĐT cần chứng minh tương đương với:

$(\sqrt{a}+\sqrt{b})^2> a+b$

$\Leftrightarrow a+b+2\sqrt{ab}> a+b$
$\Leftrightarrow \sqrt{ab}>0$ (luôn đúng với mọi $a>0, b>0$)

Ta có đpcm

--------------------

CM $|a|+|b|> |a+b|$. Cái này là = rồi chứ không phải > bạn nhé.

Khi $a>0; b>0$ thì $|a|=a; |b|=b\Rightarrow |a|+|b|=a+b$

$|a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

 

NV
27 tháng 7 2021

Đặt vế trái là P:

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)

Tương tự với 2 biểu thức còn lại, ta được:

\(P\le\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}+\dfrac{b}{b+\sqrt{ab}+\sqrt{bc}}+\dfrac{c}{c+\sqrt{ac}+\sqrt{bc}}\)

\(P\le\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bạn tham khảo ở đây nhé.

https://olm.vn/hoi-dap/detail/96898674827.html

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

\(=\dfrac{\sqrt{ab}-b-\sqrt{a}}{\sqrt{b}}\)

15 tháng 9 2021

\(a+b+c=3\\ \Leftrightarrow a\left(b+c+2\right)=ab+ac+a+b+c+1=\left(a+1\right)\left(b+c+1\right)\)

Tương tự:

\(b\left(c+a+2\right)=\left(b+1\right)\left(a+c+1\right)\\ c\left(a+b+2\right)=\left(c+1\right)\left(a+b+1\right)\)

Áp dụng BĐT cosi:

\(\left\{{}\begin{matrix}\left(a+1\right)\left(b+c+1\right)\le\dfrac{\left(a+1+b+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(b+1\right)\left(a+c+1\right)\le\dfrac{\left(b+1+a+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(c+1\right)\left(a+b+1\right)\le\dfrac{\left(c+1+a+b+1\right)^2}{2}=\dfrac{2^2}{2}=2\end{matrix}\right.\)

Cộng vế theo vế 2 BĐT trên:

\(\Leftrightarrow\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le2+2+2=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

 

 

15 tháng 9 2021

anh oi, tại sao chỗ a(b + c + 2) = ab + ac + a + b + c + 1 được ạ? :<

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)