K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

a^2 + b^2 >= 2ab

<=> a^2 + b^2 - 2ab >= 0

<=> (a - b)^2 >= 0 là BĐT đúng 

=> a^2 + b^2 >= 2ab là BĐT đúng

AH
Akai Haruma
Giáo viên
27 tháng 3 2020

Lời giải:

Theo đề bài ta có:

\(\frac{2ab+1}{2b}=\frac{2bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{2b}=2b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Rightarrow \left\{\begin{matrix} a-2b=\frac{1}{c}-\frac{1}{2b}=\frac{2b-c}{2bc}\\ a-c=\frac{1}{a}-\frac{1}{2b}=\frac{2b-a}{2ab}\\ 2b-c=\frac{1}{a}-\frac{1}{c}=\frac{c-a}{ac}\end{matrix}\right.\)

Nhân theo vế:
\((a-2b)(a-c)(2b-c)=\frac{(2b-c)(2b-a)(c-a)}{4a^2b^2c^2}=\frac{(2b-c)(a-2b)(a-c)}{4a^2b^2c^2}\)

\(\Leftrightarrow (a-2b)(a-c)(2b-c)\left[1-\frac{1}{4a^2b^2c^2}\right]=0\)

$\Rightarrow (a-2b)(a-c)(2b-c)=0$ hoặc $1-\frac{1}{4a^2b^2c^2}=0$

TH1: $(a-2b)(a-c)(2b-c)=0$\(\Rightarrow \left\{\begin{matrix} a=2b\\ a=c\\ 2b=c\end{matrix}\right.\)

+Nếu $a=2b$ thì $\frac{2b-c}{2bc}=a-2b=0\Rightarrow 2b-c=0\Rightarrow 2b=c$

$\Rightarrow a=2b=c$

+ Nếu $a=c, 2b=c$: hoàn toàn tương tự suy ra $a=2b=c$

TH2: $1-\frac{1}{4a^2b^2c^2}=0\Rightarrow 4a^2b^2c^2=1$

Vậy ta có đpcm.

22 tháng 3 2022

a,ta có a^2+2ab+b^2=[a+b]^2 lớn hơn hoặc bằng 0

b, a^2-2ab+b^2=[a-b]^2 lớn hơn hưacj bằng 0

DD
6 tháng 3 2022

\(2a^2+b^2-2ab-5b+11< 0\)

\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)

\(\Leftrightarrow4a^2-4ab+b^2+b^2-10b+25< 3\)

\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)

Ta có các trường hợp: 

\(\hept{\begin{cases}2a-b=0\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=5\end{cases}}\)(loại) 

\(\hept{\begin{cases}2a-b=1\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)(thỏa mãn) 

\(\hept{\begin{cases}2a-b=0\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=6\end{cases}}\)(thỏa mãn) 

\(\hept{\begin{cases}2a-b=1\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=6\end{cases}}\)(loại) 

28 tháng 3 2020

Đáp án:

Cho a,b,c thỏa mãn:

2ab(2b-a)-2ac(c-2a)-2bc(b-2c)= 7abc

CMR:Tồn tại 1số bằng 2 số kia.

Giải thích các bước giải:

2 tháng 2 2021
12345:123bằng bao nhiêu
5 tháng 5 2019

a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)

=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)

=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)

b,Tương tự 

\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)

=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)