Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Lời giải:
$x^2+16=25^a=(5^a)^2$
$\Rightarrow 16=(5^a)^2-x^2=(5^a-x)(5^a+x)$
$\Rightaarrow 5^a+x\in Ư(16)$
Mà $5^a+x\geq 2$ với mọi $a,x\in\mathbb{N}^*$
$\Rightarrow 5^a+x\in\left\{2; 4;8;16\right\}$
$\Rightarrow 5^a-x\in\left\{8; 4; 2; 1\right\}$
Vì $5^a+x> 5^a-x$ nên $(5^a+x, 5^a-x)\in \left\{(8,2), (16,1)\right\}$
$\Rightarrow (a,x)=(1,3)$
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
a)Ta có:\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để \(A\in Z\)thì \(x^2+3\inƯ\left(12\right)=1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\)
\(x^2=-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\)
Mà \(x^2\ge0\Rightarrow x^2=0;1;3;9\)
Mà \(x\in Z\Rightarrow x=0;1;-1;3;-3\)
b)Ta có:\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để \(A\) lớn nhất thì \(\frac{12}{x^2+3}\)phải lớn nhất
Để \(\frac{12}{x^2+3}\)lớn nhất thì \(x^2+3\)phải bé nhất
Để \(x^2+3\)bé nhất thì \(x^2\)phải bé nhất
Mà \(x^2\ge0\)
Dấu ''='' xảy ra khi \(x^2=0\)
Vậy để \(A\) lớn nhất thí \(x=0\)
Vậy \(Amax=\frac{x^2+15}{x^2+3}=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)