Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
Từ giả thiết
x^2 - yz = a
y^2 - zx = b
z^2 - xy = c
ta suy ra
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau);
và
x^3 - xyz = ax
y^3 - xyz = by
z^3 - xyz = cz.
Cộng các đẳng thức theo vế, ta được
x^3 + y^3 + z^3 - 3xyz = ax + by + cz.
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại
(x + y + z)(a + b + c) = ax + by + cz.
Suy ra ax + by + cz chia hết cho a + b + c.
\(\left(ax+by\right)^2=1\Leftrightarrow\left(ax\right)^2+2abxy+\left(by\right)^2=1\Leftrightarrow2xy\le1\Leftrightarrow xy\le\frac{1}{2}\)