Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)
\(A=\frac{-9}{2}.\frac{2}{7}\)
\(A=\frac{-9}{7}\)
b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)
\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)
\(\Leftrightarrow-2\sqrt{x}=-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
vậy \(x=1\)
c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
\(A=1-\frac{8}{\sqrt{x}+3}\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
lập bảng tự làm
\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a)\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\Leftrightarrow5\left(\sqrt{x}-1\right)=\sqrt{x}+1\)
\(\Leftrightarrow5\sqrt{x}-5=\sqrt{x}+1\)\(\Leftrightarrow4\sqrt{x}=6\)\(\Leftrightarrow\sqrt{x}=\frac{6}{4}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
Vậy A=5 khi x=9/4
b)\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x-1}}=1+\frac{2}{\sqrt{x}-1}\)
A nguyên <=> \(\frac{2}{\sqrt{x}-1}\) nguyên
<=>2 chia hết cho \(\sqrt{x}-1\)
<=>\(\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
<=>\(\sqrt{x}\in\left\{-1;0;2;3\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}\in\left\{0;2;3\right\}\)
<=>\(x\in\left\{0;4;9\right\}\)
Vậy A nguyên khi \(x\in\left\{0;4;9\right\}\)
a) Để \(f\left(x\right)=3\)
\(\Leftrightarrow\frac{2x+1}{2x+3}=3\)
\(\Leftrightarrow3.\left(2x+3\right)=2x+1\)
\(\Leftrightarrow6x+9=2x+1\)
\(\Leftrightarrow6x-2x=1-9\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Để f(x) nguyên
\(\Leftrightarrow2x+1⋮2x+3\)
\(\Leftrightarrow2x+3-2⋮2x+3\)
mà \(2x+3⋮2x+3\)
\(\Rightarrow2⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng rồi tìm x nguyên nhé