Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi d là ƯC(8a+3 ;5a+2)
Ta có:8a+3 chia hết cho d ; 5a+2 chia hết cho d
Nên 8a+3-5a+2
=> 2(8a+3)-3(5a+2) chia hết cho d
= 1 chia hết cho d
Vậy d=1 nên 8a+3 và 5a+2 là hai số nguyên tố cùng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d thuộc ƯC (8a+3;5a+2)
=>\(\hept{\begin{cases}8a+3⋮d\\5a+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(8a+3\right)⋮d\\8\left(5a+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}40a+15⋮d\\40a+16⋮d\end{cases}}\Rightarrow\left(40a+16\right)-\left(40a+15\right)⋮d_{ }\)
=>1\(⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{1;-1\right\}\)
Vậy 8a+3 và 5a+2 nguyên tố cùng nhau(vì ước chung của 2 số nguyên tố cùng nhau là :1;-1)
![](https://rs.olm.vn/images/avt/0.png?1311)
c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)
Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .
Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)
d)
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
▂ ▃ ▅ ▆ █ Type your status message █ ▆ ▅ ▃ ▂
★·.·´¯`·.·★ Type your status message ★·.·´¯`·.·★
..♩.¸¸♬´¯`♬.¸¸¤ Type your status message o ¤¸¸.♬´¯`♬¸¸.♩..
♬ •♩ ·.·´¯`·.·♭•♪ Type your status message e ♪ •♭·.·´¯`·.·♩ •♬
»——(¯` Type your status message ´¯)——» ¸
.·’★¸.·’★*·~-.¸-(★ Type your status message ★)-,.-~*¸.·’★¸.·’★
(♥).•*´¨`*•♥•(★) Type your status message (★)•♥•*´¨`*•.(♥)
• ♥ⓛⓞⓥⓔ♥☜ facebook emoons ☞♥ⓛⓞⓥⓔ♥
◢♂◣◥♀◤ facebook emoons ◢♂◣◥♀◤ ¸
.•♥•.¸¸.•♥• Type your status message •♥•.¸¸.•♥•.¸
☜♥☞ º°”˜`”°º☜(Type your status message )☞ º°”˜`”°☜♥☞
░░░░░░░░░░░░▄▄
░░░░░░░░░░░█░░█
░░░░░░░░░░░█░░█
░░░░░░░░░░█░░░█
░░░░░░░░░█░░░░█
███████▄▄█░░░░░██████▄
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█████░░░░░░░░░█
██████▀░░░░▀▀██████▀
░░░░░░███████ ]▄▄▄▄▄▄▄▄▃
▂▄▅█████████▅▄▃▂
I███████████████████].
◥⊙▲⊙▲⊙▲⊙▲⊙▲⊙▲⊙◤…
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫/\/\✰/\/✰/\/\✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/}
“{_✿__❀_♥_✿_♥_❀__✿_}
──────▄▌▐▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▌
───▄▄██▌█ ░Xe chở 100000000 đến đây..
▄▄▄▌▐██▌█ ░░░░░░ ░░░░░░░░░ ░░░░░░░▐\.
███████▌█▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▌ \.
▀❍▀▀▀▀▀▀▀❍❍▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀▀❍❍ ▀▀.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Gọi UCLN của n+1 và 3n+4 là d.
Suy ra:n+1 chia hết cho d
3n+4 chia hết cho d
Suy ra:3n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra:(3n+4)-(3n+3) chia het cho d
Suy ra: 1 chia hết cho d
Vậy d=1.
VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(ƯC\left(11a+2b;18a+5b\right)=d\left(d\in N\right)\)
\(11a+2b⋮d,18a+5b⋮d\)
\(5\left(11a+2b\right)-2\left(18a+5b\right)⋮d\)
\(55a+10b-36a-10b⋮d\)
\(19a⋮d\)
\(19⋮d\Rightarrow d\in\left\{1;19\right\}\)
gọi \(d=\left(11a+2b,18a+5b\right)\) \(\Rightarrow\hept{\begin{cases}11a+2b⋮d\\18a+5b⋮d\end{cases}}\)
\(\Rightarrow\left[11\left(18a+5b\right)-18\left(11a+2b\right)\right]⋮d\) hay \(19b⋮d\)
và \(\left[5\left(18a+2b\right)-2\left(18a+5b\right)\right]⋮d\)hay \(19a⋮d\)
\(\Rightarrow\left(19a,19b\right)⋮d\) hay
\(19\left(a,b\right)⋮d\Rightarrow19⋮d\)
vậy d = 1 hoặc d = 19 , tương ứng hai số 11a + 2b và 18a + 5b , nguyên tố cùng nhau , có ước chung là 19
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x là \(ƯC\left(8a+3b,5a+2b\right)\)
Ta có : \(8a+3b⋮x,5a+2b⋮x\)
\(\Rightarrow8a+3b-5a+2b⋮x\)
\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮x\)
\(\Rightarrow16a+16b-15a+6b⋮x\)
\(\Rightarrow1a⋮x\)
Vậy \(d=1\)nên \(8a+3b\)và \(5a+2b\)cũng là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\)\(\left(8a+3b;5a+2b\right)\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}\left(1\right)}\)
\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)
\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
\(\Rightarrow b⋮d\left(2\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2\left(8a+3b\right)⋮d\\3\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}16a+6b⋮d\\15a+6b⋮d\end{cases}}\)
\(\Rightarrow\left(16a+6b\right)-\left(15a+6b\right)⋮d\)
\(\Rightarrow a⋮d\left(3\right)\)
Từ \(\left(2\right)\)và \(\left(3\right)\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)
Mà \(\left(a;b\right)=1\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(8a+3b;5a+2b\right)=1\)
\(\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi d là ƯCLN(a; ab + 4)
ta có a chia hết cho d --> ab chia hết cho d
và ab + 4 cũng chia hết cho d
=>( ab + 4) - (ab) chia hết cho d
=> 4 chia hết cho d
=> d = {1; 2; 4}
do a lẻ không chia hết cho 2; 4 --> d = 1
=> a và ab+4 là NTCN
gọi d là ƯC(8a+3 ;5a+2)
Ta có:8a+3 chia hết cho d ; 5a+2 chia hết cho d
Nên 8a+3-5a+2
=> 2(8a+3)-3(5a+2) chia hết cho d
=> 1 chia hết cho d
Vậy d=1 nên 8a+3 và 5a+2 là hai số nguyên tố cùng nhau
Gọi d là ƯC(8a + 3; 5a + 2)
Ta có 8a + 3 \(⋮\)d; 5a + 2 \(⋮\)d
Nên (8a + 3) - (5a + 2)
=> 2.(8a + 3) - 3.(5a + 2) \(⋮\)d
= 1 \(⋮\)d => d = 1
Vì d = 1 => 8a + 5 và 5a + 2 là hai số nguyên tố cùng nhau.