Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Do a(a + 1) là tích 2 số nguyên liên tiếp => a(a - 1) chia hết cho 2
+ Nếu a và b cùng lẻ hoặc cùng chẵn thì a + b chia hết cho 2 => ab(a + b) chia hết cho 2
+ Nếu trong 2 số a và b có 1 số chẵn, 1 số lẻ => a hoặc b chia hết cho 2 => ab(a + b) chia hết cho 2
=> a(a + 1) - ab(a + b) luôn chia hết cho 2
Theo toán suy luận nói thì thế này:
a và a+1 là 2 số nguyên liên tiếp nên 1 số sẽ chia hết cho 2.
Nếu a chẵn thì ab(a+b) chia hết cho 2.
Còn trường hợp a lẻ và b cũng lẻ(b chẵn cũng chia hết cho 2):
a+b luôn chia hết cho 2.
Vậy a(a+1)-ab(a+b) chia hết cho 2.
Chúc em học tốt^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải
a, TH1 : Với a lẻ ta có : a + 3 = lẻ + lẻ = chẵn
a + 6 = lẻ + chẵn = lẻ
=> ( a + 3 ) ( a + 6 ) = chẵn x lẻ = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 3 = chẵn + lẻ = lẻ
a + 6 = chẵn + chẵn = chẵn \(⋮\) 2
b, TH1 : Với a lẻ ta có : a + 5 = lẻ + lẻ =chẵn
=> a ( a + 5 ) = lẻ x chẵn = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 5 = chẵn + lẻ = lẻ
=> a ( a + 5 ) = chẵn x lẻ = chẵn \(⋮\) 2
c, TH1 : a,b cùng chẵn
=> ab ( a + b ) = chẵn x chẵn x ( chẵn + chẵn ) = chẵn \(⋮\) 2
TH2 : a,b cùng lẻ
=> ab ( a + b ) = lẻ x ( lẻ + lẻ ) = chẵn \(⋮\) 2
TH3 : a,b một thừa số chẵn, một thừa số lẻ
=> ab ( a + b ) = chẵn ( lẻ + chẵn ) = chẵn x lẻ = chẵn \(⋮\) 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
![](https://rs.olm.vn/images/avt/0.png?1311)
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
a(a+1) luôn chia hết cho 2 nên cần cm ab(a+b) chia hết cho 2
xét a chia hết cho 2,b ko chia hết
\(\Rightarrow\)ab(a+b) chia hết cho 2
xét a ko chia hết cho 2,b chia hết cho 2\(\Rightarrow\)ab(a+b) chia hết cho 2
xét a,b ko chia hết cho 2\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=2l+1\end{cases}\Rightarrow a+b=2k+2l+2⋮2}\)
\(\Rightarrow a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\left(đpcm\right)\)
Xét : a.(a +1) thì sẽ có một số là số chẵn mà số chẵn chia hết cho 2
=) a.(a +1)\(⋮\)2 ( 1 )
Xét : ab .(a+b)
ta có : (a+b) chỉ có 1 trường hợp là số lẻ duy nhất khi a và b không cùng tính chất chẵn / lẻ
các TH còn lại thì (a+b)\(⋮\) 2 nên ab .(a+b)
nếu (a+b) lẻ thì a.b chẵn vì một trong a và b là số chẵn ( 2 )
Từ (1) và (2) =) ( đpcm )
đăng kí kênh của V-I-S nha !