Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2+b^2-2ab\ge0\)\(\Leftrightarrow a^2+b^2\ge0\)
\(\Rightarrow\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}\)\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Sửa để: \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)
Với a > 0, b > 0, c > 0, d > 0 ta có:
a < b ⇒ ac < bc (1)
c < d ⇒ bc < bd (2)
Từ (1) và (2) suy ra: ac < bd.
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\)
Vì a ; b là các số dương nên chia cả 2 vế cho a;b ta được \(\frac{a}{b}+\frac{b}{a}\ge2\)
Đẳng thức xảy ra khi a = b
..
Ta có :\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\left(1\right)\)
Mà \(\left(a+b\right)^2>0\Rightarrow a^2+2ab+b^2>0\)
\(\Rightarrow a^2+b^2>2ab\)
\(\Rightarrow\frac{a^2+b^2}{ab}>\frac{2ab}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}>2\)\(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}+\frac{b}{a}>2\left(đpcm\right)\)
chúc bạn hok tốt
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)
\(\Leftrightarrow\dfrac{a^2+b^2-2ab}{ab}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{ab}\ge0\left(ab>0\right)\)
Ta có: a,b > 0
=> \(\dfrac{a}{b},\dfrac{b}{a}>0\)
=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
Nhân 2 vế cho ab(a+b) dương ta có:
`(a+b)^2>=4ab`
`<=>(a-b)^2>=0` luôn đúng
Dấu "=" `<=>a=b`
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0
⇒ a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b (*)
a > 0, b > 0 ⇒ a.b > 0 ⇒ 1/ab > 0
Nhân hai vế của (*) với 1/ab ta có: