
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có :
\(A^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}=8+2\sqrt{\left(x+3\right)\left(5-x\right)}\)
Áp dụng bđt Cauchy ngược ta có :
\(2\sqrt{\left(x+3\right)\left(5-x\right)}\le x+3+5-x=8\)
\(\Rightarrow A^2\le8+8=16\Rightarrow A\le4\)(đpcm)

c) theo bunhia ta có:
\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)
\(\Rightarrow VT\le\sqrt{6}\)

\(A=\sqrt{x-3-2\sqrt{x-3}+1}+\sqrt{x-3-4\sqrt{x-3}+4}\)
\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}+\sqrt{\left(\sqrt{x-3}-2\right)^2}\)
\(=\left|\sqrt{x-3}-1\right|+\left|\sqrt{x-3}-2\right|\)
Do \(3\le x\le4\Rightarrow0\le\sqrt{x-3}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-3}-1\le0\\\sqrt{x-3}-2< 0\end{matrix}\right.\)
\(\Rightarrow A=1-\sqrt{x-3}+2-\sqrt{x-3}=3-2\sqrt{x-3}\)

điều kiện -4<=x<=4x<=4
\(a,\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}\)
\(A=\left|x+4\right|+\left|x-4\right|\)
KẾT HỢP ĐIỀU KIỆN
\(A=x+4+4-x\)
\(A=8\)
\(B=\sqrt{\left(3x\right)^2-6x+1}+\sqrt{\left(2x\right)^2-12x+3^2}\)
\(B=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(B=\left|3x-1\right|+\left|2x-3\right|\)
\(TH1:x>=\frac{3}{2}\)
\(B=3x-1+2x-3\)
\(B=5x-4\)
\(TH2:\frac{1}{3}< =x< \frac{3}{2}\)
\(B=3x-1-2x+3\)
\(B=x+2\)
\(TH3:x< \frac{1}{3}\)
\(B=-3x+1-2x+3\)
\(B=4-5x\)
câu c và câu d tương tự
câu c tách ra: \(C=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)
còn câu d tách ra :\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
bạn tự làm nốt câu c, d nha

Bạn ơi thứ nhất là làm ơi đặt câu hỏi hẳn hoi không thừa không thiếu đây bạn bài 1, 2 còn không cách ra đề bài thừa nhiều gây khó đọc và làm có khi là sai sẽ mất công người giải và chú ý là một câu hỏi thì chỉ nên hỏi một bài hoặc cụm câu liên quan tới nhau nha

a) \(A=\frac{x+y-2\sqrt{xy}}{x-y}\left(ĐK:xy\ge0;x\ne y\right)\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=>đpcm
b) Có: \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
=>\(\sqrt{x}=\sqrt{2}+1\)
\(y=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)
=>\(\sqrt{y}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
Nên: \(A=\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}\)
\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2=x+3+2\sqrt{\left(x+3\right)\left(5-x\right)}+5-x\)
\(2\sqrt{\left(x+3\right)\left(5-x\right)}< =x+3+5-x\)
\(\Rightarrow A^2=x+3+2\sqrt{\left(x+3\right)\left(5-x\right)}+5-x< =x+3+5-x+x+3+5-x=16\)
\(\Rightarrow A^2< =16\Rightarrow A< =4\)(đpcm)
dấu = xảy ra khi x=1
Cauchy ngược