Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = {n ∈ N | n là một ước chung của 24 và 30} = {1; 2; 3; 6}.
B = {n ∈ N | n là một ước của 6} = {1; 2; 3; 6}.
Ta thấy A ⊂ B và B ⊂ A nên A = B.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{ - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)
b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)
c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)
d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)
Ta có: \(AM = BM = CN = DN,AN = BN = CM = DM\). Từ đó suy ra
\(\left| {AM - AN} \right| = \left| {BM - BN} \right| = \left| {CM - CN} \right| = \left| {DM - DN} \right| \).
Và \(\left| {AM - AN} \right| <MN\) (bất đẳng thức trong tam giác)
Vậy bốn điểm \(A,B,C,D\) cùng thuộc một đường hyperbol với M,N là hai tiêu điểm.
\(A=\left\{x\in N|x\in B\left(2\right)\right\}\)
\(B=\left\{x\in N|x\in B\left(3\right)\right\}\)
\(C=\left\{x\in N|x\in B\left(6\right)\right\}\)
\(\Rightarrow A\cap B\) là những số vừa thuộc B(2);vừa thuộc B(3) hay mọi phần tử của \(A\cap B\) đều chia hết cho \(BCNN\left(2;3\right)=6\)
\(\Rightarrow A\cap B=C\)