Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có n-1=n+4-5
Để A là số nguyên thì n-1 phải chia hết cho n+4
=> n+4-5 chia hết cho n+4
=> n+4 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+4 | -5 | -1 | 1 | 5 |
n | -9 | -5 | -3 | 1 |
a) Để A là phân số thì \(n+4\ne0\)\(\Leftrightarrow n\ne-4\)
b) \(A=\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=1-\frac{5}{n+4}\)
Vì \(1\inℤ\)\(\Rightarrow\)Để A là số nguyên thì \(5⋮x+4\)
\(\Rightarrow x+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)\(\Rightarrow x\in\left\{-9;-5;-3;1\right\}\)
Vậy \(x\in\left\{-9;-5;-3;1\right\}\)
b, A =\(\frac{\left(n-4\right)+3}{n-4}\) =1+\(\frac{3}{n-4}\)
Để A là một số nguyên thì 3\(⋮\)n-4\(\Leftrightarrow\) n-4 \(\in\)Ư(3)={1;-1;3;-3}
n-4 | 1 | -1 | 3 | -3 |
n | 5 | 3 | 7 | 1 |
Vậy n\(\in\){5;3;7;1} thì A là một số nguyên.
a, để A là một phân số thì n phải là một số nguyên
Để A là số nguyên thì \(n-1⋮n+4\).
Ta có : n - 1 = (n + 4) - 5
Do n + 4 \(⋮\)n + 4
Để (n + 4) - 5\(⋮\)n + 4 thì 5 \(⋮\)n + 4 => n + 4\(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng :
Vậy n = {-3; -5; 1; -9} thì A là số nguyên
Gọi d=ƯCLL(n-1;n+4)
Suy ra n-1chia hết cho d
n+4_________d