K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

Vì  a là số lẻ không chia hết cho 3 

=> a=3k+1;3k+2 ( k là số tự nhiên ) 

Xét a=3k+1

=> a2-1= (3k+1)2-1

= 3k(3k+1)+3k+1-1= 3k(3k+1)+3k = 9k2+3k+3k=9k2+6k luôn chia hết cho 2;3

=> a2-1 chia het cho 6

Xet a= 3k+2

=> a2-1= ( 3k+2)2-1

= 3k(3k+2)+2(3k+2)-1

= 9k2 +6k + 6k+4-1= 9k2+12k+3 chia het cho 2 ;3

=> a2-1 chia het cho 6

=> dpcm

6 tháng 11 2016

VD: a = 7

7 Ko chia hết cho 3

7^2 - 1 = 48

48 : 6 = 8

= > khẳng định trên đúng

6 tháng 11 2016

nếu là tổng quát thì sao ?

27 tháng 6 2023

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

27 tháng 6 2023

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

27 tháng 6 2023

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

Nếu $a=6k+1$:

$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$

Nếu $a=6k+5$:

$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$

Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.

3 tháng 12 2016

Do 6= 2.3

nên a.2-1 chia hết cho 2 và 3

Mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2

=> a2-1 chia hết cho 3 

Vậy a2-1  chia hết cho 6

4 tháng 4 2022

Bạn trên làm sai rồi!

Mình làm(Đã được thầy chữa 100%)

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

@Trịnh Đức Anh

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

Vì $a$ lẻ nên $a^2-1$ chẵn $\Rightarrow a^2-1\vdots 2(1)$

Lại có:

$a$ không chia hết cho 3
$\Rightarrow a\equiv \pm 1\pmod 3$

$\Rightarrow a^2\equiv (\pm 1)^2\equiv 1\pmod 3$

$\Rightarrow a^2-1\equiv 0\pmod 3$ hay $a^2-1\vdots 3(2)$

Từ $(1); (2)$ mà $(2,3)=1$ nên $a^2-1\vdots (2.3)$ hay $a^2-1\vdots 6$