Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VD: a = 7
7 Ko chia hết cho 3
7^2 - 1 = 48
48 : 6 = 8
= > khẳng định trên đúng
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Ta có: a không chia hết cho 3
TH1: a=3m+1 (m thuộc N)
=>a2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>a2 chia 3 dư 1
TH2: a=3n+2 (n thuộc N)
=>a2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>a2 chia 3 dư 1
Vậy a2 luôn chia 3 dư 1
=>a2-1 chia hết cho 3 (1)
Ta có: a lẻ
=>a2 lẻ
=>a2-1 chẵn
=>a2-1 chia hết cho 2 (2)
Từ (1) và (2) và (3;2)=1
=>a2-1 chia hết cho 3.2=6 (đpcm)
\(\)+ ) Vì a lẻ nên a2là số lẻ suy ra a2-1 là số chẵn
Do đó (a2-1) chia hết cho 2 . Ta gọi đây là kết quả (1)
+) Vì a không chia hết cho 3 nên a=3k+1 hoặc a=3k+2 (k thuộc N )
- Với a=3k+1 ta có:
a2 -1= ( 3k+1 )2 - 1
= ( 3k+1 ) * ( 3k+1 ) - 1
= ( 3k+1 ) * 3k + ( 3k+1 ) * 1 - 1
= 9k2 + 3k + 3k + 1- 1
= 9k2 + 6k chia hết cho 3 ( vì 9 và 6 chia hết cho 3 )
- Với a=3k+2 ta có :
a2 -1= ( 3k+2 )2 - 1
= ( 3k+2 ) * ( 3k+2 ) - 1
= ( 3k+2 ) * 3k +( 3k+2 ) * 2 -1
= 9k2 + 6k + 6k +4 - 1
= 9k2 + 12k + 3 chia hết cho 3 ( vì 9;12 và 3 chia hết cho 3 )
Do đó ( a2 - 1 ) chia hết cho 3 . Ta gọi đây là kết quả (2).
- Từ (1) và (2) ta có ước chung lớn nhất của 2 và 3 bằng 1.
- Suy ra ( a2 - 1 ) chia hết cho 2 nhân 3 hay ( a2 - 1 ) chia hết cho 6
Lời giải:
Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
Nếu $a=6k+1$:
$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$
Nếu $a=6k+5$:
$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$
Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.
Do 6= 2.3
nên a.2-1 chia hết cho 2 và 3
Mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2
=> a2-1 chia hết cho 3
Vậy a2-1 chia hết cho 6
Bạn trên làm sai rồi!
Mình làm(Đã được thầy chữa 100%)
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
Lời giải:
Vì $a$ lẻ nên $a^2-1$ chẵn $\Rightarrow a^2-1\vdots 2(1)$
Lại có:
$a$ không chia hết cho 3
$\Rightarrow a\equiv \pm 1\pmod 3$
$\Rightarrow a^2\equiv (\pm 1)^2\equiv 1\pmod 3$
$\Rightarrow a^2-1\equiv 0\pmod 3$ hay $a^2-1\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $a^2-1\vdots (2.3)$ hay $a^2-1\vdots 6$