Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A\)là phân số thì \(\left(n+4\right)\ne0\)
b) Để \(A\)là số nguyên tthì \(3\)phải chia hết cho \(n+4\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n+4=1\Rightarrow n=1-4=-3\)
\(n+4=-1\Rightarrow n=-1-4=-5\)
\(n+4=3\Rightarrow n=3-4=-1\)
\(n+4=-3\Rightarrow n=-3-4=-7\)
Vậy \(n\in\left\{-3;-5;-1;-7\right\}\)thì \(A\)là số nguyên
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) Để A là số nguyên thì n-1 chia hết cho n+4
Mà n+4 chia hết cho n+4
=> (n+4)-(n-1) chia hết cho n+4
=> 5 chia hết cho n+4
=> n+4 \(\inƯ\left(5\right)\)
=> n+4 \(\in\){-5;-1;1;5}
=> n\(\in\left\{-9;-5;-3;1\right\}\)
b) có n thuộc Z =>3n+1 thuộc Z, n-3 thuộc Z
A=3n+1 / n-3 có giá trị nguyên <=> 3n+1 chia hết cho n-3
<=>3n-9+10 chia hết cho n-3
<=>3(n-3)+10 chia hết cho n-3
<=>10 chia hết cho n-3 ( vì 3(n-3) chia hết cho n-3)
<=>n-3 thuộc Ư (10)
n-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 4 | 2 | 5 | 1 | 8 | -2 | 13 | -7 |
vậy tất cả các giá trị nguyên n đều thỏa mãn
n thuộc {4;2;5;1;8;-2;13;-7}
b,do n thuộc Z =>3n+1 thuộc Z
n-3 thuộc z
n-3 không bằng 0
<=>n-3 không bằng 0 và 3n+1 thuộc Z thì A=\(\frac{3n+1}{n-3}\)là số nguyên (thuộc Z)
a, Vì mẫu số không thể bằng 0 nên để A là phân số thì n - 2 khác 0
=> n khác 2
Vậy n thuộc {...; -1; 0; 1; 3;...}
b, Để A là số nguyên thì 3 phải chia hết cho n - 2
=> n - 2 thuộc {-1; 1; -3; 3}
=> n thuộc {1; 3; -1; 5}
Vậy...
ta co de 3/n-2 la so nguyen thi =) 3 chia het cho n-2 =) n-2=(+1;+3)
=) n = 1;-1;3;5
=) de A la p/s thi n khac 1;-1;3;5
(n thuộc Z và n khác 3) B thuộc N <=> 4/n-3 thuộc N và n-3 thuộc N <=> 4 chia hết cho n-3 hay n-3 thuộc Ư(4) = {1;2;4}
<=> n thuộc {4; 5; 7} (TM)
Vậy n thuộc 4,5,7 thì B là số dương
B à số nguyên thì 4n−34n−3 là số nguyên.
⇒4⇒4 ⋮⋮ (n−3)(n−3)
⇒(n−3)∈Ư(4)⇒(n−3)∈Ư(4)
⇒(n−3)∈{±1;±2;±4}⇒(n−3)∈{±1;±2;±4}
Ta có bảng sau:
n−3n−3 | −4−4 | −2−2 | −1−1 | 11 | 22 | 44 |
nn | −1−1 | 11 | 22 | 44 | 55 | 77 |
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
Để n-2/n+3 là 1 phân số thì n+3 khác 0 => n khác -3
Để n-2/n+3 là 1 số nguyên thì n-2 chia hết cho n+3(1)
n-2 chia hết cho n-2(2)
Từ (1) và (2) ta có: n-2+n+3 chia hết cho n-2
=> 5 chia hết cho n-2=>n-2 ={-1;1;-5;5}
=> n={1;3;-2;7}