\(\frac{9}{5^2}+\frac{9}{11^2}+\frac{9}{17^2}+....+\frac{9}{305^2}\)chứng minh A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2015

9/5^2<9/2.8

9/11^2<9/8.14

............

9/305^2<9/302.308

=>B<9/2.8+9/8.14+......+9/302.308

=9/6(1/2-1/8+1/8-1/14+..........+1/302-1/308

=3/2(1/2-1/308)<3/2.1/2=3/4(đpcm)

9 tháng 3 2017

bạn ơi câu 2 từ dưới lên là sao zậy?  *=*

2 tháng 3 2020

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow\frac{2}{5}< A< \frac{8}{8}\)

Vây:.....

- Hok tốt ~

2 tháng 3 2020

- k bn ơi ~

14 tháng 7 2016

de ma nhan cho minh minh tra loi cho

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)