Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9/5^2<9/2.8
9/11^2<9/8.14
............
9/305^2<9/302.308
=>B<9/2.8+9/8.14+......+9/302.308
=9/6(1/2-1/8+1/8-1/14+..........+1/302-1/308
=3/2(1/2-1/308)<3/2.1/2=3/4(đpcm)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow\frac{2}{5}< A< \frac{8}{8}\)
Vây:.....
- Hok tốt ~
Bạn tham khảo nhé
\(a)\)Đặt \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm )
Vậy \(A< 1\)