Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-...-\frac{1}{23.27}=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{23.27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{23}{54}\)
Ta có :
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}=\frac{27-4}{54}=\frac{23}{54}\)
Ủng hộ mk nha !!! ^_^
\(C=\frac{3.8.15....80.99}{4.9.16.81.100}\)
\(=\frac{1.3.2.4.3.5...8.10.9.11}{2.2.3.3.4.4...9.9.10.10}\)
\(=\frac{\left(1.2.3....9\right).\left(3.4.5...10.11\right)}{\left(2.3.4.5...10\right).\left(2.3.4...10\right)}\)
\(=\frac{11}{10}\)
trả lời
c=\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{99}{100}\)
C=\(\frac{3.8.15....99}{4.9.16.100}\)
C=\(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\)
C=\(\frac{\left(1.2.....9\right)}{2.3....10}.\left(\frac{3.4....11}{2.3...10}\right)\)
C=\(\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
\(A=\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}+...+\frac{4}{399.403}\)
\(=\frac{19-15}{15.19}+\frac{23-19}{19.23}+\frac{27-23}{23.27}+...+\frac{403-399}{399.403}\)
\(=\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}+...+\frac{1}{399}-\frac{1}{403}\)
\(=\frac{1}{15}-\frac{1}{403}\)