\(\dfrac{x+2}{32}+\dfrac{2}{x+1}-3\)) . \(\dfrac{x+1}{2-4x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

23 tháng 3 2018

câu rút gọn dễ mà e

24 tháng 3 2018

Em làm ra rồi. Tại bữa trước ghi nhầm dấu, tính không ra nên ms hỏi đó.

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

ĐKXĐ: \(x\neq \left\{2;\pm 3\right\}\)

a) Ta có:

\(P=\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)

\(P=\left(\frac{x(x-3)}{(x-3)(x+3)}-1\right):\left(\frac{(3-x)(3+x)}{(x-2)(x+3)}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)

\(P=\left(\frac{x}{x+3}-1\right):\left(\frac{3-x}{x-2}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)

\(P=\frac{x-(x+3)}{x+3}:\left(-\frac{x-2}{x+3}\right)=\frac{-3}{x+3}.\frac{x+3}{-(x-2)}=\frac{3}{x-2}\)

b) \(x^3-3x+2=0\)

\(\Leftrightarrow (x^3-x)-2(x-1)=0\)

\(\Leftrightarrow x(x-1)(x+1)-2(x-1)=0\)

\(\Leftrightarrow (x-1)(x^2+x-2)=0\)

\(\Leftrightarrow (x-1)[(x^2-1)+(x-1)]=0\)

\(\Leftrightarrow (x-1)^2(x+2)=0\) \(\Leftrightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)

Với \(x=1\Rightarrow P=\frac{3}{1-2}=-3\)

Với \(x=-2\Rightarrow P=\frac{3}{-2-2}=\frac{-3}{4}\)

c)

\(P=\frac{3}{x-2}\in\mathbb{Z}\Leftrightarrow 3\vdots x-2\)

\(\Leftrightarrow x-2\in \text{Ư}(3)\Rightarrow x-2\in\left\{\pm 1; \pm 3\right\}\)

\(\Leftrightarrow x\in \left\{3,1,5,-1\right\}\)

Do \(x\neq 3\Rightarrow x\in \left\{-1,1,5\right\}\)

16 tháng 10 2017

a) \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\dfrac{x^2}{3\left(9-x^2\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\left(\dfrac{x^2}{3.\left(3-x\right).\left(3+x\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+3.\left(3-x\right)}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+9-3x}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}.\dfrac{3.\left(3x-x\right).\left(3+x\right)}{x^2+9-3x}\)

\(\Rightarrow A=\dfrac{1}{x.\left(x-3\right)}.\left(-\left(x-3\right)\right).\left(3+x\right)\)

\(\Rightarrow A=\dfrac{1}{x}.\left(-1\right).\left(3+x\right)\)

\(\Rightarrow A=-\dfrac{1}{x}.\left(3+x\right)\)

28 tháng 7 2017

\(x^2-25=y\left(y+6\right)\) (1)

\(\Leftrightarrow x^2-y^2-6y-25=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)

Xét các trường hợp, ta tìm được các no nguyên của pt (1).

\(x^2+x+6=y^2\) (2)

\(\Leftrightarrow4x^2+4x+24=4y^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)

Xét các trường hợp, ta tìm được các no nguyên của pt (2).

\(x^2+13y^2=100+6xy\) (3)

\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (3).

\(x^2-4x=169-5y^2\) (4)

\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)

Ta thấy:

\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0

=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)

Vậy pt (4) vô n0.

\(x^2-x=6-y^2\) (5)

\(\Leftrightarrow4x^2-4x=24-4y^2\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (5).

28 tháng 7 2017

\(y^3=x^3+x^2+x+1\left(1\right)\)

Ta có:

\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)

\(\Rightarrow y>x\)

\(\Rightarrow y\ge x+1\)

\(\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)

\(\Leftrightarrow2x^2+2x\le0\)

\(\Leftrightarrow2x\left(x+1\right)\le0\)

\(\Rightarrow-1\le x\le0\) mà x là số nguyên

=> x = - 1 hoặc x = 0

(+) x = - 1

VT = 0

=> y = 0 ; x = - 1 (nhận)

(+) x = 0

VT = 1

=> y = 1 ; x = 0 (nhận)

Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)

\(x^4+x^2+1=y^2\) (2)

(+)

\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)

\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)

(+)

\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)

\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)

Ta thấy:

Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)

=> x = 0

=> y = 1 (nhận)

Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)

8 tháng 12 2017

a) \(M=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{x^2-1}\right):\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\left(\dfrac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\dfrac{-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\dfrac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)

\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{x^2-1}{1-2x}\)

\(\Leftrightarrow M=\dfrac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)

\(\Leftrightarrow M=\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)

\(\Leftrightarrow M=\dfrac{2}{1-2x}\)

b) \(M=\dfrac{2}{1-2x}=\dfrac{-2}{3}\)

\(\Rightarrow2.3=\left(1-2x\right).\left(-2\right)\)

\(\Rightarrow6=-2+4x\)

\(\Rightarrow4x=6-\left(-2\right)\)

\(\Rightarrow4x=6+2\)

\(\Rightarrow4x=8\)

\(\Rightarrow x=8:4\)

\(\Rightarrow x=2\)

Vậy \(M=\dfrac{-2}{3}\) thì \(x=2\)

c) Để \(M=\dfrac{2}{1-2x}\in Z\) \(\Leftrightarrow2⋮1-2x\)

\(\Rightarrow1-2x\in U\left(2\right)=\left\{-1;1;-2;2\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}1-2x=-1\Rightarrow x=1\\1-2x=1\Rightarrow x=0\\1-2x=-2\Rightarrow x=1,5\\1-2x=2\Rightarrow x=-0,5\end{matrix}\right.\)

\(x\in Z\)

\(\Rightarrow x\in\left\{1;0\right\}\)

Vậy \(x=1\) hoặc \(x=0\) thì \(M\in Z\)

8 tháng 12 2017

a) M = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)

= \(\left(\dfrac{1}{1-x}+\dfrac{2}{1+x}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{x^2-1}{1-2x}\)

= \(\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

= \(\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)\(=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

=\(\dfrac{2}{1-2x}\)

b) M = \(\dfrac{-2}{3}\Leftrightarrow\dfrac{2}{1-2x}=\dfrac{-2}{3}\)

=> 2 . 3 = -2 (1 - 2x) (tích chéo)

=> 6 = -2 + 4x

=> 6 + 2 - 4x = 0

=> 8 - 4x = 0

=> 4x = 8

=> x = 2 (thỏa mãn đkxđ)

Vậy để M = \(\dfrac{-2}{3}\) thì x = 2

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

13 tháng 11 2017

a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)+z\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y+z\right)}=\dfrac{x+y}{x+y+z}\)

b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y-z\right)\left(x-z+y\right)}\)\(=\dfrac{x+y+z}{x-y-z}\)

c) \(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)

d) \(\dfrac{4x^2\left(x-2\right)+3\left(x-2\right)}{4x^2\left(3x+1\right)+3\left(3x+1\right)}=\dfrac{\left(x-2\right)\left(4x^2+3\right)}{\left(3x+1\right)\left(4x^2+3\right)}=\dfrac{x-2}{3x+1}\)

13 tháng 11 2017

a) áp dụng hằng đẳng thức