Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
a: Xet ΔCDM vuông tại M và ΔCBA vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCBA
b: BM=5a-2a=3a
\(AC=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
ΔCDM đồng dạngvơi ΔCBA
=>CD/CB=DM/BA=CM/CA
=>CD/5a=DM/3a=2a/4a=1/2
=>CD=2,5a; DM=1,5a
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=5/2=2,5(cm) và MN//BC
hay MNBC là hình thang
b: Xét ΔCMB và ΔAMD có
\(\widehat{BCM}=\widehat{DAM}\)
CM=AM
\(\widehat{CMB}=\widehat{AMD}\)
Do đó: ΔCMB=ΔAMD
Suy ra: MB=MD
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
a: Xét ΔCAB có CM/CA=CN/CB
nênMN//AB
b: Xét ΔCAB có MN//AB
nên MN/AB=CM/CA
=>MN/6=1/4
=>MN=1,5cm
c: góc CMD=góc CHD=90 độ
=>CMHD nội tiếp
=>góc AMH=góc ADC
Xét ΔAMH và ΔADC có
góc AMH=góc ADC
góc A chung
=>ΔAMH đồng dạng với ΔADC