Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^2+b^2\)
\(=\left(a+b\right)^2-2ab\)
Thay \(a+b=-5;a.b=6\) vào biểu thức ta được :
\(a,=\left(-5\right)^2-2.6\)
\(=25-12\)
\(=13\)
a, \(a^2+b^2=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13\)
b, \(a^3+b^3=\left(a+b\right)^3-3a^2b-3b^2a\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-5\right)^3-3.6.\left(-5\right)\)
\(=-125-18.\left(-5\right)=-125+90=-35\)
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
ý a)
(a+b)^2=a^2+b^2+2ab
=> 529=a^2+b^2+246 => a^2+b^2=283
(a^2+b^2)^2=a^4+b^4+2.a^2.b^2
=> 80089=a^4+b^4+30258 => a^4+b^4=49831
(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)
=> 14102173=a^6+b^6+15129.283 => a^6+b^6=9820666
còn lại bạn tự tính
a) \(a^2+b^2=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2ab=5^2-2.6=25-12=13\)
a) Vì \(a+b=5\Rightarrow\left(a+b\right)^2=25\)
\(\Rightarrow a^2+2ab+b^2=25\)
Mà ab= 6
\(\Rightarrow a^2+18+b^2=25\)
\(\Rightarrow a^2+b^2=7\)
\(P=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-1\right)^3-3\left(-6\right)\left(-1\right)=-1-18=-19\)
\(a+b=-1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\Rightarrow a^2+b^2=1-2ab=1-2.\left(-6\right)=13\)
\(P=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(-1\right).\left(13+6\right)=-19\)
\(\cdot a-4b=5\Leftrightarrow\left(a-4b\right)^2=a^2-8ab+16b^2=25\Leftrightarrow a^2+16b^2=25+8\cdot\left(-\dfrac{3}{2}\right)=13\\ \cdot a-4b=5\Leftrightarrow4b-a=-5\)
\(a,A=ab\left(4b-a\right)=-\dfrac{3}{2}\cdot\left(-5\right)=\dfrac{15}{2}\)
\(b,B=a^2+16b^2=13\left(cm.trên\right)\)
\(c,D=a+4b\)
Ta có \(\left(a+4b\right)^2=a^2+8ab+16b^2=13+8\cdot\left(-\dfrac{3}{2}\right)=1\)
\(\Rightarrow D=a+4b=1\)
Có \(a-b=2\Leftrightarrow a=2+b\)
Thay vào \(a.b=3\Leftrightarrow\left(b+2\right)b=b^2+2b=3\Leftrightarrow b^2+2b-3=0\)
\(\Leftrightarrow\left(b+3\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}b=-3\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\a=3\end{cases}}}\)
Thay từng trường hợp vào P và Q