Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ ta có: }\frac{a}{b}=\frac{a.\left(b+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.a}{b^2+2015.b}\)
\(\frac{a+2015}{b+2015}=\frac{b.\left(a+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.b}{b^2+2015.b}\)
Nếu a>b thì :
\(a.b+2015.a>a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}>\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
Nếu a=b thì:
\(a.b+2015.a=a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}=\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}=\frac{a+2015}{b+2015}\)
Nếu a<b thì:
a.b+2015.a<a.b+2015.b \(\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}
do ad-bc=2015
=>ad>bc
=>a/b>c/d(1)
cg-de=2015
=>cg>de
=>c/d>e/g(2)
từ (1)và (2)=>a/b>c/d>e/g
Có: \(\sqrt{2015}< \sqrt{2016}\)
=>\(\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2016}}\)
=>\(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>0\)
=>\(\sqrt{2015}+\sqrt{2016}+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)
=>\(\left(\sqrt{2015}+\frac{1}{\sqrt{2015}}\right)+\left(\sqrt{2016}-\frac{1}{\sqrt{2016}}\right)>\sqrt{2015}+\sqrt{2016}\)
=>\(\frac{2016}{\sqrt{2015}}+\frac{2015}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)
bn tham khảo nhé :
Câu hỏi của Cao Nữ Khánh Linh - Toán lớp 6 - Học toán với OnlineMath
kiểu giống như vậy luôn ;)
mình lộn vào đây nè Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath