Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 3a+4b chia hết cho 23 thì 8.(3a+4b)=24a+32b (1) chia hết cho 23
Ta xét biểu thức 3.(8a+3b)=24a+9b (2)
Lấy (1) trừ đi (2) được (24a+32b)-(24a+9b)=24a+32b-24a-9b=23b chia hết cho 23
Vậy 8.(3a+4b)-3.(8a+3b) chia hết cho 23
Mà 8.(3a+4b) chia hết cho 23
=> 3.(8a+3b) chia hết cho 23, mà (8;23)=1
=>8a+3b chia hết cho 23
Ngược lại thì bạn xét biểu thức 3.(8a+3b)-8.(3a+4b), làm tương tự như trên
- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow8a+5b+7b⋮7\)
Mà \(7b⋮7\) với mọi b nguyên \(\Rightarrow8a+5b⋮7\)
- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow4\left(2a+3b\right)⋮7\)
Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Xet bieu thuc: 6(7a+3b)+(4a+5b)
=42a+18b+4a+5b
=46a+23b
=23(2a+b)
Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23
Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23
Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:
abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b
Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7
⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7
Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7
3a + 4 không chứa b em xem lại xem đã ghi đúng đề bài chưa nhé.
An kiểu -_-
thầy giao sai đề