Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
\(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow a^5+ab^4+a^4b+b^5\ge a^5+a^2b^3+a^3b^2+b^5\)
\(\Leftrightarrow ab^4+a^4b-a^2b^3-a^3b^2\ge0\)
\(\Leftrightarrow ab\left(a^3+b^3-ab^2-a^2b\right)\ge0\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)(Do ab > 0)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)Luôn đúng do a,b dương
Dấu "='' khi a = b
c) Áp dụng BĐT Cauchy-schwars ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)
đpcm
a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b
Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Dấu "=" xảy ra <=> a = b
b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)
<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)
<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c.
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
Áp dụng BĐT Cauchy Schwarz và BĐT \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\), ta có:
\(\left(2^2+2^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(2a^2+2b^2\right)^2\)\(\ge\left[2\times\dfrac{1}{2}\left(a+b\right)^2\right]^2=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\dfrac{\left(a+b\right)^4}{8}\)
Dấu "=" xảy ra khi a = b
Áp dụng BĐT Bunhiacopxki,ta có:
\(a^4+b^4\) \(\geq\) \(\dfrac{\left(a^2+b^2\right)^2}{2}\) \(\geq\) \(\dfrac{\left(\dfrac{1}{2}\left(a+b\right)^2\right)^2}{2}\) = \(\dfrac{\dfrac{1}{4}\left(a+b\right)^4}{2}\) = \(\dfrac{\left(a+b\right)^4}{8}\)
Dấu = xảy ra khi a=b
Áp dụng BĐT AM-GM dạng mẫu số được
\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\)
Ta có : \(a^2+b^2+c^2\ge ab+bc+ac\) (dễ dàng chứng minh được)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ac\ge2\left(ab+bc+ac\right)\) và \(\left(a^2+b^2+c^2\right)^2\ge\left(ab+bc+ac\right)^2\)
Do vậy \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\ge\frac{\left(ab+bc+ac\right)^2}{2\left(ab+bc+ac\right)}=\frac{ab+bc+ac}{2}\)
Dấu "=" xảy ra khi a = b = c > 0
qua de
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}\)
áp dụng BĐT bnyacovsky :\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\left(4+4\right)\left(a^4+b^4\right)\ge\left(2a^2+2b^2\right)^2\ge\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
dấu = xảy ra khi a=b