Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(VT=a^2+b^2+c^2+3abc=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+3abc\left(a+b+c\right)}{a+b+c}\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc}{a+b+c}\)
\(=\frac{a^3+b^3+c^3+3abc+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+6abc}{a+b+c}\)
\(\ge\frac{2ab\left(a+b\right)+2bc\left(b+c\right)+2ca\left(c+a\right)+6abc}{a+b+c}\)
\(=\frac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{a+b+c}=6\)
Có sai sót gì xin cmt bên dưới ạ
Câu 1: (3,0 điểm). Giải các phương trình:
a) \(3x+5=2x+2\).
\(\Leftrightarrow3x-2x=2-5\).
\(\Leftrightarrow x=-3\).
Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).
b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).
\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).
\(\Rightarrow x-5=4x-8+3x+3\).
\(\Leftrightarrow x-4x-3x=-8+3+5\).
\(\Leftrightarrow-6x=0\).
\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).
Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).
c) \(\left|x-3\right|+1=2x-7\)
- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:
\(x-3+1=2x-7\).
\(\Leftrightarrow x-2=2x-7\).
\(\Leftrightarrow x-2x=-7+2\).
\(\Leftrightarrow-x=-5\).
\(\Leftrightarrow x=5\)(thỏa mãn).
- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:
\(3-x+1=2x-7\).
\(\Leftrightarrow4-x=2x-7\).
\(-x-2x=-7-4\).
\(\Leftrightarrow-3x=-11\).
\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).
Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).
Câu 2: (2,0 điểm).
a) \(5x-5>x+15\).
\(\Leftrightarrow5x-x>15+5\).
\(\Leftrightarrow4x>20\).
\(\Leftrightarrow x>5\).
Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).
b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).
\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).
\(\Leftrightarrow40-20x>36-3x\).
\(\Leftrightarrow-20x+3x>36-40\).
\(\Leftrightarrow-17x>-4\).
\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).
\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).
Vậy \(x=0\).
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
qua de
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}\)
áp dụng BĐT bnyacovsky :\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\left(4+4\right)\left(a^4+b^4\right)\ge\left(2a^2+2b^2\right)^2\ge\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
dấu = xảy ra khi a=b
a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)
CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)
c/CM: \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)
d/Ta xét hiệu: \(a^4-4a+3\)
\(=a^4-2a^2+1+2a^2-4a+2\)
\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)
Suy ra BĐT luôn đúng
e/Ta xét hiệu:( Làm nhanh)
\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)
f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)
\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)
Mà \(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)
Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)
g/Làm rồi..xem lại trong trang cá nhân
h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)
\(=a^5b+ab^5-a^2b^4-a^4b^2\)
\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)
\(=ab\left(a^2-b^2\right)\left(a-b\right)\)
\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)
Suy ra ĐPCM
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
Áp dụng BĐT Cauchy Schwarz và BĐT \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\), ta có:
\(\left(2^2+2^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(2a^2+2b^2\right)^2\)\(\ge\left[2\times\dfrac{1}{2}\left(a+b\right)^2\right]^2=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\dfrac{\left(a+b\right)^4}{8}\)
Dấu "=" xảy ra khi a = b
Áp dụng BĐT Bunhiacopxki,ta có:
\(a^4+b^4\) \(\geq\) \(\dfrac{\left(a^2+b^2\right)^2}{2}\) \(\geq\) \(\dfrac{\left(\dfrac{1}{2}\left(a+b\right)^2\right)^2}{2}\) = \(\dfrac{\dfrac{1}{4}\left(a+b\right)^4}{2}\) = \(\dfrac{\left(a+b\right)^4}{8}\)
Dấu = xảy ra khi a=b