K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

fghgffh

17 tháng 7 2016

Ta thành lập một biểu thức có dạng như sau:

\(\left(a^{2015}+b^{2015}\right)\left(a+b\right)-\left(a^{2014}+b^{2014}\right)ab=a^{2016}+b^{2016}\)  \(\left(1\right)\)

Mà  \(a^{2014}+b^{2014}=a^{2015}+b^{2015}=a^{2016}+b^{2016}\)  (theo gt)

nên từ  \(\left(1\right)\)  suy ra  \(\left(a^{2016}+b^{2016}\right)\left(a+b\right)-\left(a^{2016}+b^{2016}\right)ab=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(\left(a^{2016}+b^{2016}\right)\left(a+b-ab\right)=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(a+b-ab=1\)  (do   \(a^{2016}+b^{2016}\ne0\))

\(\Leftrightarrow\) \(\left(1-a\right)\left(b-1\right)=0\)

\(\Leftrightarrow\)  \(\orbr{\begin{cases}1-a=0\\b-1=0\end{cases}}\)  \(\Leftrightarrow\)  \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Với  \(a=1\)  thì ta dễ dàng suy ra  \(b=1\)

Tương tự với  \(b=1\)

Vậy,  \(\left(x,y\right)=\left(1,1\right)\)

23 tháng 4 2016

trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó

23 tháng 4 2016

p giải giúp mik đk k .. mik k có sách đấy

28 tháng 4 2016

Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)

Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)

Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó

28 tháng 4 2016

http://olm.vn/thanhvien/phantuananhlop9a1

29 tháng 12 2019

\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)

\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\)( bình phương 2 vế rồi rút gọn )

\(\Rightarrow a^2\left(1-a^2\right)=b\left(1-b^2\right)\)

\(\Rightarrow a^4-b^4-\left(a^2-b^2\right)=0\)

\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a^2-b^2\right)=0\)

\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a=b\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a^2+b^2=2a^2=2b^2\end{cases}}\)

Đến đây có 2 trường hợp xảy ra , hình như bạn ghi thiếu gì đó

15 tháng 3 2022

gớmmmmmmmmmmmmm

15 tháng 3 2022

khi chs flo mà ko có ny

thì chắc như bn này