Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)
Xét 2 trường hợp:
TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)
TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)
Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)
Chúc bạn học tốt!
a) Để y dương thì 2a-1 < 0
=> 2a < 1
=> a < \(\frac{1}{2}\)
b) Để y âm thì 2a-1 > 0
=> 2a > 1
=> a > \(\frac{1}{2}\)
c) Để y ko âm, ko dương thì 2a-1 = 0
=> 2a = 1
=> a = \(\frac{1}{2}\)
Tick cho mik nha
Ta có: \(a,b,c,d\in N^{\times}\)nên:
\(\Rightarrow a+b+c< a+b+c+d\)
\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Lại có: \(a,b,c,d\in N^{\times}\) nên:
\(\Rightarrow a+b+c>a+b\)
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)
Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)
Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.
sửa đề câu 1.
cho \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
...
giải
cộng 1 vào mỗi tỉ số ta được :
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
+) nếu a + b + c = 0 thì :
b + c = -a ; a + c = -b ; a + b = -c
\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-1+\left(-1\right)+\left(-1\right)=-3\)
+ ) nếu a + b + c \(\ne\)0 thì : a = b = c
\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Vậy ...
2) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)
hay \(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right).\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\left(a-b\right).\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
Vậy ...
TRỜI ƠI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
KHÓ QUÁ TUI KO GIẢI ĐƯỢC
MỚI HỌC CÓ LỚP 6 THUI À
S = a/a+b + b/b+c + c/a+c
S > a/a+b+c + b/a+b+c + c/a+b+c
S > a+b+c/a+b+c
S > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
S = a/a+b + b/b+c + c/a+c
S < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c
S < 2. (a+b+c)/a+b+c
S < 2 (2)
Từ (1) và (2) => 1 < S < 2 => S không là số tự nhiên ( đpcm)