K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

TRỜI ƠI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

KHÓ QUÁ TUI KO GIẢI ĐƯỢC

MỚI HỌC CÓ LỚP 6 THUI À

4 tháng 8 2016

S = a/a+b + b/b+c + c/a+c

S > a/a+b+c + b/a+b+c + c/a+b+c

S > a+b+c/a+b+c

S > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

 S = a/a+b + b/b+c + c/a+c

S < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c

S < 2. (a+b+c)/a+b+c

S < 2 (2)

Từ (1) và (2) => 1 < S < 2 => S không là số tự nhiên ( đpcm)

29 tháng 7 2019

Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)

Xét 2 trường hợp:

TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)

TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)

Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)

Chúc bạn học tốt!

29 tháng 7 2019

Ngan Vu Thi

9 tháng 9 2016

a và b đúng

c sai

10 tháng 9 2016

a) Dung 

b) Sai

c) Dung

28 tháng 8 2015

a) Để y dương thì 2a-1 < 0

=> 2a < 1

=> a < \(\frac{1}{2}\)

b) Để y âm thì 2a-1 > 0

=> 2a > 1

=> a > \(\frac{1}{2}\)

c) Để y ko âm, ko dương thì 2a-1 = 0

=> 2a = 1

=> a = \(\frac{1}{2}\)

Tick cho mik nha

 

 

5 tháng 2 2020

Ta có: \(a,b,c,d\in N^{\times}\)nên:

\(\Rightarrow a+b+c< a+b+c+d\)

\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Lại có: \(a,b,c,d\in N^{\times}\) nên:

\(\Rightarrow a+b+c>a+b\)

\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)

Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)

Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.

13 tháng 12 2017

sửa đề câu 1.

cho \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

...

giải

cộng 1 vào mỗi tỉ số ta được :

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

+)  nếu a + b + c = 0 thì :

b + c = -a ; a + c = -b ; a + b = -c

\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-1+\left(-1\right)+\left(-1\right)=-3\)

+ ) nếu a + b + c \(\ne\)0 thì : a = b = c

\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Vậy ...

2) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

hay \(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right).\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right).\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...