Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*)a=-0,372870255
b=0,69
c=0,89
thỏa mãn bằng 2
*)a=0
b=0,1
c=0,11
thỏa mãn bé hơn 2 mà các số lớn hớn 0 đều lớn hơn a,b,c theo trình tự nên mọi 0<=a<=b<=c<=1 đều thỏa mãn biểu thức đó
t cũng ko biết c/m số dưới dạng biến thế nào
Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé
em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x
như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0
Ta có: a + b + c = 0.
=> a = - b - c
b = -a - c
c = - a- b.
Nên ta có:
ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a
= -b^2 - bc - ca -c^2 - a^2 - ab
= -( a^2 + b^2 + c^2)- (ab + bc + ca)
=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)
Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)
=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.
=> ab + bc + ca bé hơn hoặc bằng 0.
Vậy ab + bc + ca bé hơn hoặc bằng 0.
Ta có:
\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)
\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)
\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)