Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
Ta co :a+b+c=0
a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+3abc+3abc+3abc-3abc=0
a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Vi : a+b+c=0
\(\Rightarrow\)a3+b3+c3+0+0+0=3abc
\(\Rightarrow\)a3+b3+c3=3abc
\(\Rightarrow\)dpcm
nho k nha
a+b+c = 0
=> a+b = -c
=> (a+b)^3 = (-c) ^3
=> a^3 + b^3 + 3ab(a+b) = -c^3
=> a^3 +b^3 +c^3 = - 3ab(a+b)
=> a^3 + b^3 + c^3 = 3abc ( vì a+b = -c) ( đpcm)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
1. \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
2. \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
3.Còn có a + b + c = 0 nữa mà bn.
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
+ \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(-c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
(Nhớ k cho mình với nhá!)
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
ta có a+b+c=0
=>a+b=-c
ta có a^3 +b^3+c^3
=(a+b)(a^2-ab+b^2)+c^3
=-c(a^2+b^2-ab)+c^3
=-c[(a+b)^2-2ab-ab]+c^3
= -c[(-c)^2-3ab]+c^3
= (-c)^3+3abc+c^3
=3abc