Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)
\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)
Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)
Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.
Bài này hay:)
c = min {a,b,c}. Đặt
\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)
\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)
\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)
\(b=y+c=\frac{2y-x+3}{3}\)
Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
Giờ em đang bận, tối em làm tiếp!
\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)
\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)
\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)
\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)
Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)
Cộng vế với vế:
\(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
\(1+a^2=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)
Tương tự với 2 biểu thức còn lại
\(\Rightarrow\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{\left(1+a^2\right)}}=\sqrt{\frac{\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)}{\left(a+b\right)\left(a+c\right)}}=b+c\)
\(\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=a+c\)
\(\Rightarrow VT=\left(1-a^2\right)\left(b+c\right)+\left(1-b^2\right)\left(a+c\right)\)
\(=b+c-a^2b-a^2c+a+c-ab^2-b^2c\)
\(=2c+a+b-a\left(1-bc-ac\right)-a^2c-b\left(1-bc-ac\right)-b^2c\)
\(=2c+a+b-a+abc+a^2c-a^2c-b+b^2c+abc-b^2c\)
\(=2c+2abc=2c\left(1+ab\right)\)
Lời giải:
Để ý rằng \(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
Tương tự thì \(b^2+1=(b+c)(b+a)\)
\(c^2+1=(c+a)(c+b)\)
\(\Rightarrow A=\sqrt{(a+b)^2(b+c)^2(c+a)^2}=|(a+b)(b+c)(c+a)|\)