K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

GIẢI

 Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)

 Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)

          \(\frac{b}{c+a}\le\frac{b}{b+c}\)

           \(\frac{c}{a+b}\le\frac{c}{b+c}\)

Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)

Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)

Chúc bạn học tốt !!!

21 tháng 9 2019

GIẢI

 Giả sử : a\ge b\ge c&gt;0abc>0 thì a+b\ge a+c\ge b+ca+ba+cb+c

 Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca​=b+ca

          \frac{b}{c+a}\le\frac{b}{b+c}c+ab​≤b+cb

           \frac{c}{a+b}\le\frac{c}{b+c}a+bc​≤b+cc

Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca​+c+ab​+c+bc​≤b+ca+b+c

Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1&lt; 1+1=2b+ca​+c+ab​+c+bc​≤b+ca​+1<1+1=2

Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}&lt; 2b+ca​+c+ab​+c+bc​<2

6 tháng 1 2017

a=12 b=1 c=4

k đi

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

19 tháng 8 2016

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)

Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

                                                  \(\ge2+2+2=6\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

30 tháng 8 2016

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\)     vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3                                                                           

20 tháng 6 2018

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

20 tháng 6 2018

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

20 tháng 12 2016

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

19 tháng 8 2016

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

16 tháng 10 2017

Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c

\(a+b\ge2\sqrt{ab}\)    ;  \(b+c\ge2\sqrt{bc}\);   \(c+a\ge\sqrt{ca}\)

Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi a = b = c => tam giác đó đều

10 tháng 8 2015

Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0

Áp dụng BĐT co si cho 2 số dương ta có:

a+b\(\ge2\sqrt{ab}\)

b+c\(\ge2\sqrt{bc}\)

a+c\(\ge2\sqrt{ac}\)

=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)

Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c

Mà theo đề bài (a+b)(b+c)(c+a)=8abc

=>a=b=c=>tam giác đó là tam giác đều

6 tháng 1 2017

co cach khac khong , minh chua hoc bat dang thuc cosi