K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)

Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

                                                  \(\ge2+2+2=6\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

30 tháng 8 2016

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\)     vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3                                                                           

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

13 tháng 2 2018

Do a;b;c là 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)

Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)

Gọi \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(\Rightarrow2A=\frac{\left(y+z\right)}{x}+\frac{\left(x+z\right)}{y}+\frac{\left(x+y\right)}{z}\)

            \(=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)

Rồi dùng Cô-si

\(\Rightarrow2A\ge6\)

\(\Leftrightarrow A\ge3\)

Dấu = xảy ra khi a=b=c

6 tháng 1 2017

a=12 b=1 c=4

k đi

14 tháng 3 2016

Đặt  \(x=b+c-a;\)  \(y=c+a-b;\)  và  \(z=a+b-c\)

thì  \(a=\frac{y+z}{2};\)  \(b=\frac{x+z}{2};\)  và  \(c=\frac{x+y}{2}\) 

Khi đó, vế trái của bất đẳng thức trên được quy về dưới dạng:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}\)

Do đó, áp dụng bất đẳng thức AM-GM cho ba số  dương \(x,y,z\), ta được:

\(VT=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)\ge2\sqrt{\frac{y}{2x}.\frac{x}{2y}}+2\sqrt{\frac{z}{2x}.\frac{x}{2z}}+2\sqrt{\frac{z}{2y}.\frac{y}{2z}}=3=VP\)

Vậy,  \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)  \(\left(đpcm\right)\)

Dấu   \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)  \(\Leftrightarrow\)  tam giác đó là tam giác đều.

31 tháng 3 2016

Diện tích toàn phần hình lập phương là :

6,4 x 6,4 x 5 = 204,8 ( m2 ) 

Diện tích phần tôn còn lại là : 

204,8 - 15 = 189,8 ( m2 ) 

Đáp số : 189,8 m2

11 tháng 8 2016

Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)

được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

11 tháng 8 2016

công thức 

\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\) 

chứng minh thế nào