\(\dfrac{4a}{b+c-a}+\dfrac{9b}{c+a-b}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)

\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)

19 tháng 7 2019

Sao cô lại cộng thêm 29/2 vậy ạ? Em nghĩ như vậy thì phải biết trước được điểm rơi chứ nhỉ?

1 tháng 6 2018

: -> Câu hỏi của Almira

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Xem thêm tại đây.

Câu hỏi của Trương quang huy hoàng - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

Ta có:

\(A=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(\Rightarrow A+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(A+\frac{29}{2}=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{a+c-b}+\frac{8(a+b+c)}{a+b-c}\)

\(A+\frac{29}{2}=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{a+c-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}\)

(Áp dụng BĐT S.Vac -xơ)

\(\Rightarrow A\geq 26\)

Vậy \(A_{\min}=26\)

1 tháng 9 2015

Đặt \(b+c-a=2x,c+a-b=2y,a+b-c=2z\to x,y,z>0\)  v

à thỏa mãn \(a=y+z,b=z+x,c=x+y.\) Đặt \(S=2VT\)  (hai lần vế trái của bất đẳng thức)  thì ta có

\(S=\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}=\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\)

Theo bất đẳng thức Cô-Si ta được

\(S\ge2\sqrt{\frac{4y}{x}\cdot\frac{9x}{y}}+2\sqrt{\frac{4z}{x}\cdot\frac{16x}{z}}+2\sqrt{\frac{9z}{y}\cdot\frac{16y}{z}}=2\cdot6+2\cdot8+2\cdot12=2\cdot26=52.\)

Suy ra \(VT=\frac{S}{2}\ge\frac{52}{2}=26\).   (ĐPCM)


 

1 tháng 11 2019

đề sai ở mẫu cuối nhé

đặt b + c - a = x ; a + c - b = y ; a + b - c = z

\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)

\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)

\(\ge6+8+12=26\)

1 tháng 11 2019

bài này dấu ' =" giải ra mệt lắm nên bạn tự giải

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)

Áp dụng BĐT AM-GM:

\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)

Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$

AH
Akai Haruma
Giáo viên
6 tháng 10 2018

Bài 2:
Áp dụng BĐT Cauchy-Schwarz:

\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)

\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)

Cộng những BĐT vừa cm được ở trên với nhau:

\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)

Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)

24 tháng 12 2015

Ban nen cho phan khac chu khong phai phan giai tri