\(A=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Mình đặt bằng A cho dễ tính nha

A=a/b+a/c+b/c+b/a+c/b+c/a

Áp dụng bst cosi ta có:

a/b+b/a\(\ge\)2√(a.b/b.a)=2

Tươn tự ta chứng minh được

a/c+c/a\(\ge\)2

b/c+c/b\(\ge\)2

Suy ra

A\(\ge\)6

7 tháng 8 2017

Bài 3:

Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)

\(=2+2+2=6\)

Dấu " = " khi x = y = z = 1

Vậy...

7 tháng 8 2017

3. Với x,y,z>0 áp dụng BĐT Cauchy ta có

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)

\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)

1. Với a=b=c=0, ta thấy BĐT trên đúng

Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương

\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)

Cộng (1), (2), (3) vế theo vế:

\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)

Do đó BĐT trên đúng \(\forall a,b,c\ge0\)

1 tháng 6 2018

: -> Câu hỏi của Almira

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Xem thêm tại đây.

Câu hỏi của Trương quang huy hoàng - Toán lớp 9 | Học trực tuyến

7 tháng 8 2017

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+1=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{b^2}{b^2}\)

\(\ge\dfrac{\left(a+2b+c\right)}{ab+bc+ca+b^2}=\dfrac{\left(a+b\right)^2+2\left(a+b\right)\left(b+c\right)+\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{\left(a+b\right)}{\left(b+c\right)}+\dfrac{\left(b+c\right)}{a+b}+2\)

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{\left(a+b\right)}{\left(b+c\right)}+\dfrac{\left(b+c\right)}{a+b}+1\)

2 tháng 6 2017

Đặt \(\dfrac{a}{b}=x;\dfrac{b}{c}=y;\dfrac{c}{a}=z\). Dễ thấy rằng

\(\dfrac{a+c}{b+c}=\dfrac{1+xy}{1+y}=x+\dfrac{1-x}{1+y}\)

Thiếp lập các hệ thức tương tự, bài toán trở về chứng minh với \(xyz=1\) có:

\(\dfrac{x-1}{y+1}+\dfrac{y-1}{z+1}+\dfrac{z-1}{x+1}\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(z+1\right)+\left(y^2-1\right)\left(x+1\right)+\left(z^2-1\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow x^2z+z^2y+y^2x+x^2+y^2+z^2\ge x+y+z+3\)

Áp dụng BĐT AM-GM ta có:

\(x^2z+z^2y+y^2x\ge3\sqrt[3]{\left(xyz\right)^3}=3\)

Vậy còn phải chứng minh \(x^2+y^2+z^2\ge x+y+z\)

Điều này đúng vì \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge x+y+z\)

2 tháng 6 2017

22 tháng 3 2021

Sử dụng Cô si cho 2 số dương ta được

                        \dfrac{a^3b}{c}+\dfrac{a^3c}{b}=a^3\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a^3ca3b​+ba3c​=a3(cb​+bc​)≥2a3

Làm tương tự với hai cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có

          \dfrac{a^3b}{c}+\dfrac{a^3c}{b}+\dfrac{b^3c}{a}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}+\dfrac{c^3a}{b}\ge2\left(a^3+b^3+c^3\right)ca3b​+ba3c​+ab3c​+cb3a​+ac3b​+bc3a​≥2(a3+b3+c3)  (1)

Lại theo bất đẳng thức Cô si ta được     

                                        a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abca3+b3+c3≥33a3b3c3​=3abc      (2)

Từ (1) và (2) suy ra đpcm.  

Theo bất đẳng thức cô si ta có 

\(\dfrac{a^3b}{c}\) + \(\dfrac{a^3c}{b}\) = a^3(b/c+c/b) ≥ 2a^3

Tương tự với 1 cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có 

a^3b/c+ a^3c/b + b^3c/a+b^3a/c + c^3b/a+ c^3a/b ≥ 2(a^3+b^3+c^3) (1)

Theo bất đẳng thức cô si ta được 

a^3 + b^3 +c^3 ≥ 3\(\sqrt{a^3b^3c^3}=3abc (2) \)

Từ (1) và (2) suy ra đpcm 

22 tháng 3 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(ab\le\frac{\left(a+b\right)^2}{4}\)=> \(\frac{ab}{a+b}\le\frac{a+b}{4}\)

Tương tự : \(\frac{bc}{b+c}\le\frac{b+c}{4}\)\(\frac{ca}{c+a}\le\frac{c+a}{4}\)

Cộng vế với vế các bđt trên ta có đpcm

Đẳng thức xảy ra <=> a=b=c

13 tháng 7 2021

Có     ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow\dfrac{ab}{a+b}\le\dfrac{a+b}{4}ab4(a+b)2a+bab4a+b.

Áp dụng bất đẳng thức cô si ta có, với a,b,c >0

a/bc + b/ac ≥ 2*1/c 

b/ac + c/ab ≥ 2*1/a

a/bc + c/ab ≥ 2*1/b 

Cộng từng vế của 3 bất đẳng thức trên với nhau ta được

2*(a/bc + b/ac + c/ab) ≥ 2(1/a+1/b+1/c) 

<=> đpcm

9 tháng 7 2021

 

Sử dụng bất đẳng thức Cô si cho hai số dương ta có:

                                   \dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ca}}=\dfrac{2}{b}bca+cab2bca.cab=b2

Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức nhận được rồi chia 2 vế bất đẳng thức cho 2 ta được đpcm.