K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

(1 + a^2 ) + 1/(1+b^2) >= 2/( 1+ab)
<=> (1+ b^2)(1+ab) + (1+a^2)(1 +ab) >= 2(1+a^2)(1+ b^2)
<=>1 + b^2 +ab + ab^3 + 1 +a^2 +ab + a^3b - 2(1 +a^2 +b^2 +a^2b^2) >=0
<=> ab(a^2 - 2ab +b^2) - (a^2 +2ab +b^2) >= 0
<=> (ab -1)(a-b)^2 >= 0
Điều này hiển nhiên đúng do ab >= 1; (a-b)^2 >= 0
Dấu "=" khi và chỉ khi a =b =1

7 tháng 4 2021

a) Điều phải chứng minh tương đương với:

\(a^3+b^3-a^2b-b^2a\ge0\\ \Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\left(luon.dung\right)\)

Dấu = xảy ra khi a=b

b) Áp dụng bất đẳng thức ở phần a ta có:

\(\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{a^2b+b^2a+abc}=\dfrac{1}{ab\left(a+b+c\right)}\\ =\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\left(do.abc=1\right)\)

Tương tự : \(\dfrac{1}{b^3+c^3+1}\le\dfrac{a}{a+b+c};\dfrac{1}{c^3+a^3+1}\le\dfrac{b}{a+b+c}\)

\(\Rightarrow P\le\dfrac{a+b+c}{a+b+c}=1\)

Dấu = xảy ra  <=> a=b=c=1

18 tháng 5 2017

a) Ta có: (a - 1)( b - 1)(c - 1) = abc - ab - bc - ac + a + b +c - 1 (*)

Mà abc =1 => (*) = (1 - 1) + (a + b + c) - (ab + bc + ac)

= ( a + b + c ) - ( ab + ac + bc)

\(\ge\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) - ( ab + ac +bc )

= \(\dfrac{ab+ac+bc}{abc}\) - ab - ac - bc

= ab + bc + ac - ab - ac - bc = 0 ( do abc =1)

=> đpcm

18 tháng 5 2017

Mk chưa hiểu đề câu b lắm . Viêt lại nha!

11 tháng 12 2017

a/ \(\left(a^2+b^2\right)+\left(a^2+1\right)+\left(b^2+1\right)\ge2ab+2a+2b\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

b/ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

c/ \(M=x^4-6x^3+13x^2-12x-5\)

Đặt \(x^2-3x=a\)thì ta có:

\(M=a^2+4a-5=\left(a+2\right)^2-9\ge-9\)

Dấu = xảy ra khi:

\(x^2-3x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 1:

Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)

Áp dụng BĐT AM-GM cho các số dương:

\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)

\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)

\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 2:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)

\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)

\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Cộng theo vế và rút gọn:

\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)

\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=1$

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$

$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

9 tháng 6 2021

cảm ơn ạ

 

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)