Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)
=> có ít nhất 1 trong 3 số a,b,c bằng 1
Vậy có ít nhất 1 trong 3 số a,b,c bằng 1
Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)
\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1
=> Đpcm
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2015}\)
\(\Rightarrow2015\left(ab+bc+ac\right)=abc\)
mà a+b+c=2015 \(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ac\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ac\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
\(\Rightarrow a+c=0\Rightarrow b=2015;b+c=0\Rightarrow a=2015;a+c=0\Rightarrow b=2015\)
VẬy.......
Ta có: \(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{abc}{abc+a^2\left(a+b+c\right)}}=\sqrt{\frac{bc}{ac+a^2+ab+ac}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si được
\(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
Thiết lập các bđt còn lại cho 2 số hạng còn lại rồi cộng vào được đpcm
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)
⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0
Đến đây suy ra ĐPCM
Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
<=> a + b + c = bc + ac + ab
<=> (a - ac) + (b - bc) + (c - ab) = 0
<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0
<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0
<=> (1 - c)(ca + cb - c - 1) = 0
<=> (1 - c)[c(a -1) + (cb - abc)]= 0
<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0
<=> (1 - c)(a - 1)(c - cb) = 0
<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1
Vậy....
http://olm.vn/hoi-dap/question/179947.html