Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x−y)2=(x+y)2−4xy=2012−4xy(x−y)2=(x+y)2−4xy=2012−4xy
Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y||x−y|
Không mất tính tổng quát giả sử: x≥yx≥y thì: x≥101x≥101; y≤100y≤100
Khi đó: |x−y|=x−y=x+y−2y=201−2y|x−y|=x−y=x+y−2y=201−2y
Ta có: 1≤y≤1001≤y≤100 nên: 1≤|x−y|=201−2y≤1991≤|x−y|=201−2y≤199
Lập luận đi ngược lại thì tìm được các cực trị
dùng cô si thôi
\(a^4+b^2\ge2a^2b;b^4+c^2\ge2b^2c;c^4+a^2\ge2c^2a\)
\(a^2b^2+a^2\ge2a^2b;b^2c^2+b^2\ge2b^2c;c^2a^2+c^2\ge2c^2a\)
từ 2 cái trên =>\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{3\left(ab+bc+ca\right)}{\left(a^2+b^2+c^2\right)^2}\)
đặt t=a2+b2+c2\(\ge\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\left[2\left(t-\frac{1}{2}\right)^2-\frac{19}{2}\right]\left(t-3\right)\ge0\)
\(\Leftrightarrow2t^3-8t^2-3t+27\ge0\)
\(\Leftrightarrow\frac{2t^3-3t+27}{2t^2}\ge4\Rightarrow P\ge4\)
Ta có: (x−y)2=(x+y)2−4xy=2012−4xy(x−y)2=(x+y)2−4xy=2012−4xy
Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y||x−y|
Không mất tính tổng quát giả sử: x≥yx≥y thì: x≥101x≥101; y≤100y≤100
Khi đó: |x−y|=x−y=x+y−2y=201−2y|x−y|=x−y=x+y−2y=201−2y
Ta có: 1≤y≤1001≤y≤100 nên: 1≤|x−y|=201−2y≤1991≤|x−y|=201−2y≤199
Lập luận đi ngược lại thì tìm được các cực trị
Bạn xem lại đề nhé! Mình nghĩ đề đúng là:
"a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm Min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)"
Bạn áp dụng BĐT AM-GM là ra nhé
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1
Cân bằng hệ số:
Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)
\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)
\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)
Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)
Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:
\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)
Dấu "=" xảy ra khi a = b =c = 1
\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+ab^2+b^3+bc^2+c^3+ca^2+a^2b+b^2c+c^2a\)
\(\ge2\sqrt{a^3.ab^2}+2\sqrt{b^3.bc^2}+2\sqrt{c^3.ca^2}+a^2b+b^2c+c^2a=3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
\(P\ge a^2+b^2+c^2+\frac{9}{2\left(a^2+b^2+c^2\right)}-\frac{1}{2}=\frac{a^2+b^2+c^2}{2}+\frac{9}{2\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{2}-\frac{1}{2}\)
\(P\ge2\sqrt{\frac{9\left(a^2+b^2+c^2\right)}{4\left(a^2+b^2+c^2\right)}}+\frac{\left(a+b+c\right)^2}{3.2}-\frac{1}{2}=4\)
\(P_{min}=4\) khi \(a=b=c=1\)
Đặt \(a^2+b^2+c^2=t\)
Ta đi chứng minh: \(t=a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)(*)
Thật vậy: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3+b^3+c^3\right)+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)(**)
Áp dụng BĐT AM - GM, ta có: \(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)(do a,b dương) (1)
Tương tự ta có: \(b^3+bc^2\ge2b^2c\left(2\right);c^3+2ca^2\ge2c^2a\left(3\right)\)
Cộng theo vế của các BĐT (1), (2), (3), ta được: \(\left(a^3+b^3+c^3\right)+\left(ab^2+bc^2+ca^2\right)\ge2\left(a^2b+2b^2c+2c^2a\right)\)(***)
Từ (**) và (***) suy ra \(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\). Do đó (*) đúng.
Ta có: \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}=t+\frac{9-t}{2t}\)với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Bài toán trở thành tìm GTNN của \(f\left(t\right)=t+\frac{9-t}{2t}\)với \(t\ge3\)
Ta chứng minh \(f\left(t\right)\ge f\left(3\right)\Leftrightarrow t+\frac{9-t}{2t}\ge4\Leftrightarrow\frac{\left(t-3\right)\left(2t-3\right)}{2t}\ge0\)(đúng với mọi \(t\ge3\))
Vậy \(MinP=4\)khi t = 3 hay a = b = c = 1
em moi hoc laop 6 thoi